Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 15;352(Pt 1):1–17.

Strategies for manipulating the p53 pathway in the treatment of human cancer.

T R Hupp 1, D P Lane 1, K L Ball 1
PMCID: PMC1221427  PMID: 11062053

Abstract

Human cancer progression is driven in part by the mutation of oncogenes and tumour-suppressor genes which, under selective environmental pressures, give rise to evolving populations of biochemically altered cells with enhanced tumorigenic and metastatic potential. Given that human cancers are biologically and pathologically quite distinct, it has been quite surprising that a common event, perturbation of the p53 pathway, occurs in most if not all types of human cancers. The central role of p53 as a tumour-suppressor protein has fuelled interest in defining its mechanism of function and regulation, determining how its inactivation facilitates cancer progression, and exploring the possibility of restoring p53 function for therapeutic benefit. This review will highlight the key biochemical properties of p53 protein that affect its tumour-suppressor function and the experimental strategies that have been developed for the re-activation of the p53 pathway in cancers.

Full Text

The Full Text of this article is available as a PDF (303.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abarzúa P., LoSardo J. E., Gubler M. L., Neri A. Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res. 1995 Aug 15;55(16):3490–3494. [PubMed] [Google Scholar]
  2. Abarzúa P., LoSardo J. E., Gubler M. L., Spathis R., Lu Y. A., Felix A., Neri A. Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene. 1996 Dec 5;13(11):2477–2482. [PubMed] [Google Scholar]
  3. Abraham J., Kelly J., Thibault P., Benchimol S. Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry. J Mol Biol. 2000 Jan 28;295(4):853–864. doi: 10.1006/jmbi.1999.3415. [DOI] [PubMed] [Google Scholar]
  4. Adams P. D., Sellers W. R., Sharma S. K., Wu A. D., Nalin C. M., Kaelin W. G., Jr Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol Cell Biol. 1996 Dec;16(12):6623–6633. doi: 10.1128/mcb.16.12.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andera L., Wasylyk B. Transcription abnormalities potentiate apoptosis of normal human fibroblasts. Mol Med. 1997 Dec;3(12):852–863. [PMC free article] [PubMed] [Google Scholar]
  6. Anderson M. E., Woelker B., Reed M., Wang P., Tegtmeyer P. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol Cell Biol. 1997 Nov;17(11):6255–6264. doi: 10.1128/mcb.17.11.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Appella E., Anderson C. W. Signaling to p53: breaking the posttranslational modification code. Pathol Biol (Paris) 2000 Apr;48(3):227–245. [PubMed] [Google Scholar]
  8. Arrigo A. P. Gene expression and the thiol redox state. Free Radic Biol Med. 1999 Nov;27(9-10):936–944. doi: 10.1016/s0891-5849(99)00175-6. [DOI] [PubMed] [Google Scholar]
  9. Avantaggiati M. L., Ogryzko V., Gardner K., Giordano A., Levine A. S., Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell. 1997 Jun 27;89(7):1175–1184. doi: 10.1016/s0092-8674(00)80304-9. [DOI] [PubMed] [Google Scholar]
  10. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. doi: 10.1126/science.2144057. [DOI] [PubMed] [Google Scholar]
  11. Ball K. L., Lain S., Fâhraeus R., Smythe C., Lane D. P. Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr Biol. 1997 Jan 1;7(1):71–80. doi: 10.1016/s0960-9822(06)00029-7. [DOI] [PubMed] [Google Scholar]
  12. Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., Smorodinsky N. I., Prives C., Reiss Y., Shiloh Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998 Sep 11;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
  13. Bannister A. J., Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996 Dec 19;384(6610):641–643. doi: 10.1038/384641a0. [DOI] [PubMed] [Google Scholar]
  14. Bartek J., Iggo R., Gannon J., Lane D. P. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 1990 Jun;5(6):893–899. [PubMed] [Google Scholar]
  15. Bates S., Phillips A. C., Clark P. A., Stott F., Peters G., Ludwig R. L., Vousden K. H. p14ARF links the tumour suppressors RB and p53. Nature. 1998 Sep 10;395(6698):124–125. doi: 10.1038/25867. [DOI] [PubMed] [Google Scholar]
  16. Bischoff J. R., Casso D., Beach D. Human p53 inhibits growth in Schizosaccharomyces pombe. Mol Cell Biol. 1992 Apr;12(4):1405–1411. doi: 10.1128/mcb.12.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Blagosklonny M. V., Toretsky J., Bohen S., Neckers L. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8379–8383. doi: 10.1073/pnas.93.16.8379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Blagosklonny M. V., Toretsky J., Neckers L. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene. 1995 Sep 7;11(5):933–939. [PubMed] [Google Scholar]
  19. Blattner C., Sparks A., Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol. 1999 May;19(5):3704–3713. doi: 10.1128/mcb.19.5.3704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Blaydes J. P., Craig A. L., Wallace M., Ball H. M., Traynor N. J., Gibbs N. K., Hupp T. R. Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene. 2000 Aug 10;19(34):3829–3839. doi: 10.1038/sj.onc.1203773. [DOI] [PubMed] [Google Scholar]
  21. Blaydes J. P., Gire V., Rowson J. M., Wynford-Thomas D. Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2. Oncogene. 1997 Apr 17;14(15):1859–1868. doi: 10.1038/sj.onc.1201018. [DOI] [PubMed] [Google Scholar]
  22. Blaydes J. P., Hupp T. R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998 Aug 27;17(8):1045–1052. doi: 10.1038/sj.onc.1202014. [DOI] [PubMed] [Google Scholar]
  23. Blaydes J. P., Vojtesek B., Bloomberg G. B., Hupp T. R. The development and use of phospho-specific antibodies to study protein phosphorylation. Methods Mol Biol. 2000;99:177–189. doi: 10.1385/1-59259-054-3:177. [DOI] [PubMed] [Google Scholar]
  24. Blaydes J. P., Wynford-Thomas D. The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene. 1998 Jun 25;16(25):3317–3322. doi: 10.1038/sj.onc.1201880. [DOI] [PubMed] [Google Scholar]
  25. Bond J. A., Webley K., Wyllie F. S., Jones C. J., Craig A., Hupp T., Wynford-Thomas D. p53-Dependent growth arrest and altered p53-immunoreactivity following metabolic labelling with 32P ortho-phosphate in human fibroblasts. Oncogene. 1999 Jun 24;18(25):3788–3792. doi: 10.1038/sj.onc.1202733. [DOI] [PubMed] [Google Scholar]
  26. Buckbinder L., Talbott R., Velasco-Miguel S., Takenaka I., Faha B., Seizinger B. R., Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995 Oct 19;377(6550):646–649. doi: 10.1038/377646a0. [DOI] [PubMed] [Google Scholar]
  27. Bullock A. N., Henckel J., DeDecker B. S., Johnson C. M., Nikolova P. V., Proctor M. R., Lane D. P., Fersht A. R. Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14338–14342. doi: 10.1073/pnas.94.26.14338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bullock A. N., Henckel J., Fersht A. R. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene. 2000 Mar 2;19(10):1245–1256. doi: 10.1038/sj.onc.1203434. [DOI] [PubMed] [Google Scholar]
  29. Bunz F., Hwang P. M., Torrance C., Waldman T., Zhang Y., Dillehay L., Williams J., Lengauer C., Kinzler K. W., Vogelstein B. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999 Aug;104(3):263–269. doi: 10.1172/JCI6863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Burch L. R., Midgley C. A., Currie R. A., Lane D. P., Hupp T. R. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA. FEBS Lett. 2000 Apr 21;472(1):93–98. doi: 10.1016/s0014-5793(00)01427-7. [DOI] [PubMed] [Google Scholar]
  31. Bártek J., Bártková J., Vojtesek B., Stasková Z., Lukás J., Rejthar A., Kovarík J., Midgley C. A., Gannon J. V., Lane D. P. Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene. 1991 Sep;6(9):1699–1703. [PubMed] [Google Scholar]
  32. Böttger A., Böttger V., Sparks A., Liu W. L., Howard S. F., Lane D. P. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol. 1997 Nov 1;7(11):860–869. doi: 10.1016/s0960-9822(06)00374-5. [DOI] [PubMed] [Google Scholar]
  33. Cai K., Dynlacht B. D. Activity and nature of p21(WAF1) complexes during the cell cycle. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12254–12259. doi: 10.1073/pnas.95.21.12254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cairns C. A., White R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 1998 Jun 1;17(11):3112–3123. doi: 10.1093/emboj/17.11.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Canman C. E., Lim D. S., Cimprich K. A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M. B., Siliciano J. D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998 Sep 11;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. [DOI] [PubMed] [Google Scholar]
  36. Caron de Fromentel C., Gruel N., Venot C., Debussche L., Conseiller E., Dureuil C., Teillaud J. L., Tocque B., Bracco L. Restoration of transcriptional activity of p53 mutants in human tumour cells by intracellular expression of anti-p53 single chain Fv fragments. Oncogene. 1999 Jan 14;18(2):551–557. doi: 10.1038/sj.onc.1202338. [DOI] [PubMed] [Google Scholar]
  37. Casso D., Beach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1996 Oct 16;252(5):518–529. doi: 10.1007/BF02172398. [DOI] [PubMed] [Google Scholar]
  38. Chai Y. L., Cui J., Shao N., Shyam E., Reddy P., Rao V. N. The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene. 1999 Jan 7;18(1):263–268. doi: 10.1038/sj.onc.1202323. [DOI] [PubMed] [Google Scholar]
  39. Chakravarti D., Ogryzko V., Kao H. Y., Nash A., Chen H., Nakatani Y., Evans R. M. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell. 1999 Feb 5;96(3):393–403. doi: 10.1016/s0092-8674(00)80552-8. [DOI] [PubMed] [Google Scholar]
  40. Chan T. A., Hermeking H., Lengauer C., Kinzler K. W., Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999 Oct 7;401(6753):616–620. doi: 10.1038/44188. [DOI] [PubMed] [Google Scholar]
  41. Chehab N. H., Malikzay A., Appel M., Halazonetis T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 2000 Feb 1;14(3):278–288. [PMC free article] [PubMed] [Google Scholar]
  42. Chen J., Jackson P. K., Kirschner M. W., Dutta A. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature. 1995 Mar 23;374(6520):386–388. doi: 10.1038/374386a0. [DOI] [PubMed] [Google Scholar]
  43. Chen J., Marechal V., Levine A. J. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol. 1993 Jul;13(7):4107–4114. doi: 10.1128/mcb.13.7.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Chen L., Agrawal S., Zhou W., Zhang R., Chen J. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):195–200. doi: 10.1073/pnas.95.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Chen L., Lu W., Agrawal S., Zhou W., Zhang R., Chen J. Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol Med. 1999 Jan;5(1):21–34. [PMC free article] [PubMed] [Google Scholar]
  46. Cheng E. H., Levine B., Boise L. H., Thompson C. B., Hardwick J. M. Bax-independent inhibition of apoptosis by Bcl-XL. Nature. 1996 Feb 8;379(6565):554–556. doi: 10.1038/379554a0. [DOI] [PubMed] [Google Scholar]
  47. Cheng M., Olivier P., Diehl J. A., Fero M., Roussel M. F., Roberts J. M., Sherr C. J. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999 Mar 15;18(6):1571–1583. doi: 10.1093/emboj/18.6.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Chittenden T., Flemington C., Houghton A. B., Ebb R. G., Gallo G. J., Elangovan B., Chinnadurai G., Lutz R. J. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 1995 Nov 15;14(22):5589–5596. doi: 10.1002/j.1460-2075.1995.tb00246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Cho Y., Gorina S., Jeffrey P. D., Pavletich N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994 Jul 15;265(5170):346–355. doi: 10.1126/science.8023157. [DOI] [PubMed] [Google Scholar]
  50. Clements A., Rojas J. R., Trievel R. C., Wang L., Berger S. L., Marmorstein R. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J. 1999 Jul 1;18(13):3521–3532. doi: 10.1093/emboj/18.13.3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Clore G. M., Ernst J., Clubb R., Omichinski J. G., Kennedy W. M., Sakaguchi K., Appella E., Gronenborn A. M. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol. 1995 Apr;2(4):321–333. doi: 10.1038/nsb0495-321. [DOI] [PubMed] [Google Scholar]
  52. Cohen P. A., Hupp T. R., Lane D. P., Daniels D. A. Biochemical characterization of different conformational states of the Sf9 cell-purified p53His175 mutant protein. FEBS Lett. 1999 Dec 10;463(1-2):179–184. doi: 10.1016/s0014-5793(99)01603-8. [DOI] [PubMed] [Google Scholar]
  53. Cosulich S. C., Worrall V., Hedge P. J., Green S., Clarke P. R. Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol. 1997 Dec 1;7(12):913–920. doi: 10.1016/s0960-9822(06)00410-6. [DOI] [PubMed] [Google Scholar]
  54. Cotto J. J., Morimoto R. I. Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp. 1999;64:105–118. [PubMed] [Google Scholar]
  55. Craig A. L., Blaydes J. P., Burch L. R., Thompson A. M., Hupp T. R. Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation. Oncogene. 1999 Nov 4;18(46):6305–6312. doi: 10.1038/sj.onc.1203085. [DOI] [PubMed] [Google Scholar]
  56. Craig A. L., Burch L., Vojtesek B., Mikutowska J., Thompson A., Hupp T. R. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Biochem J. 1999 Aug 15;342(Pt 1):133–141. [PMC free article] [PubMed] [Google Scholar]
  57. Crook T., Tidy J. A., Vousden K. H. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell. 1991 Nov 1;67(3):547–556. doi: 10.1016/0092-8674(91)90529-8. [DOI] [PubMed] [Google Scholar]
  58. Cuddihy A. R., Li S., Tam N. W., Wong A. H., Taya Y., Abraham N., Bell J. C., Koromilas A. E. Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53. Mol Cell Biol. 1999 Apr;19(4):2475–2484. doi: 10.1128/mcb.19.4.2475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Cuddihy A. R., Wong A. H., Tam N. W., Li S., Koromilas A. E. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene. 1999 Apr 29;18(17):2690–2702. doi: 10.1038/sj.onc.1202620. [DOI] [PubMed] [Google Scholar]
  60. Dasika G. K., Lin S. C., Zhao S., Sung P., Tomkinson A., Lee E. Y. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene. 1999 Dec 20;18(55):7883–7899. doi: 10.1038/sj.onc.1203283. [DOI] [PubMed] [Google Scholar]
  61. David-Pfeuty T. Potent inhibitors of cyclin-dependent kinase 2 induce nuclear accumulation of wild-type p53 and nucleolar fragmentation in human untransformed and tumor-derived cells. Oncogene. 1999 Dec 9;18(52):7409–7422. doi: 10.1038/sj.onc.1203103. [DOI] [PubMed] [Google Scholar]
  62. Davison T. S., Yin P., Nie E., Kay C., Arrowsmith C. H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene. 1998 Aug 6;17(5):651–656. doi: 10.1038/sj.onc.1202062. [DOI] [PubMed] [Google Scholar]
  63. Derossi D., Chassaing G., Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 1998 Feb;8(2):84–87. [PubMed] [Google Scholar]
  64. Dumaz N., Meek D. W. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 1999 Dec 15;18(24):7002–7010. doi: 10.1093/emboj/18.24.7002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Durocher D., Henckel J., Fersht A. R., Jackson S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol Cell. 1999 Sep;4(3):387–394. doi: 10.1016/s1097-2765(00)80340-8. [DOI] [PubMed] [Google Scholar]
  66. Eastham J. A., Hall S. J., Sehgal I., Wang J., Timme T. L., Yang G., Connell-Crowley L., Elledge S. J., Zhang W. W., Harper J. W. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res. 1995 Nov 15;55(22):5151–5155. [PubMed] [Google Scholar]
  67. Elenbaas B., Dobbelstein M., Roth J., Shenk T., Levine A. J. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol Med. 1996 Jul;2(4):439–451. [PMC free article] [PubMed] [Google Scholar]
  68. Eller M. S., Maeda T., Magnoni C., Atwal D., Gilchrest B. A. Enhancement of DNA repair in human skin cells by thymidine dinucleotides: evidence for a p53-mediated mammalian SOS response. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12627–12632. doi: 10.1073/pnas.94.23.12627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Ellis R. J., Hartl F. U. Principles of protein folding in the cellular environment. Curr Opin Struct Biol. 1999 Feb;9(1):102–110. doi: 10.1016/s0959-440x(99)80013-x. [DOI] [PubMed] [Google Scholar]
  70. Fields S., Jang S. K. Presence of a potent transcription activating sequence in the p53 protein. Science. 1990 Aug 31;249(4972):1046–1049. doi: 10.1126/science.2144363. [DOI] [PubMed] [Google Scholar]
  71. Finlay C. A., Hinds P. W., Levine A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989 Jun 30;57(7):1083–1093. doi: 10.1016/0092-8674(89)90045-7. [DOI] [PubMed] [Google Scholar]
  72. Fiscella M., Ullrich S. J., Zambrano N., Shields M. T., Lin D., Lees-Miller S. P., Anderson C. W., Mercer W. E., Appella E. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene. 1993 Jun;8(6):1519–1528. [PubMed] [Google Scholar]
  73. Foster B. A., Coffey H. A., Morin M. J., Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science. 1999 Dec 24;286(5449):2507–2510. doi: 10.1126/science.286.5449.2507. [DOI] [PubMed] [Google Scholar]
  74. Fourie A. M., Hupp T. R., Lane D. P., Sang B. C., Barbosa M. S., Sambrook J. F., Gething M. J. HSP70 binding sites in the tumor suppressor protein p53. J Biol Chem. 1997 Aug 1;272(31):19471–19479. doi: 10.1074/jbc.272.31.19471. [DOI] [PubMed] [Google Scholar]
  75. Friedlander P., Legros Y., Soussi T., Prives C. Regulation of mutant p53 temperature-sensitive DNA binding. J Biol Chem. 1996 Oct 11;271(41):25468–25478. doi: 10.1074/jbc.271.41.25468. [DOI] [PubMed] [Google Scholar]
  76. Friedman P. N., Chen X., Bargonetti J., Prives C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3319–3323. doi: 10.1073/pnas.90.8.3319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Fritsche M., Haessler C., Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene. 1993 Feb;8(2):307–318. [PubMed] [Google Scholar]
  78. Fuchs S. Y., Adler V., Buschmann T., Wu X., Ronai Z. Mdm2 association with p53 targets its ubiquitination. Oncogene. 1998 Nov 12;17(19):2543–2547. doi: 10.1038/sj.onc.1202200. [DOI] [PubMed] [Google Scholar]
  79. Fuchs S. Y., Adler V., Buschmann T., Yin Z., Wu X., Jones S. N., Ronai Z. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 1998 Sep 1;12(17):2658–2663. doi: 10.1101/gad.12.17.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Gaiddon C., Moorthy N. C., Prives C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 1999 Oct 15;18(20):5609–5621. doi: 10.1093/emboj/18.20.5609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Ganly I., Kirn D., Eckhardt G., Rodriguez G. I., Soutar D. S., Otto R., Robertson A. G., Park O., Gulley M. L., Heise C. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000 Mar;6(3):798–806. [PubMed] [Google Scholar]
  82. Gannon J. V., Greaves R., Iggo R., Lane D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990 May;9(5):1595–1602. doi: 10.1002/j.1460-2075.1990.tb08279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Gorospe M., Cirielli C., Wang X., Seth P., Capogrossi M. C., Holbrook N. J. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 1997 Feb 27;14(8):929–935. doi: 10.1038/sj.onc.1200897. [DOI] [PubMed] [Google Scholar]
  84. Gostissa M., Hengstermann A., Fogal V., Sandy P., Schwarz S. E., Scheffner M., Del Sal G. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 1999 Nov 15;18(22):6462–6471. doi: 10.1093/emboj/18.22.6462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Goukassian D. A., Eller M. S., Yaar M., Gilchrest B. A. Thymidine dinucleotide mimics the effect of solar simulated irradiation on p53 and p53-regulated proteins. J Invest Dermatol. 1999 Jan;112(1):25–31. doi: 10.1046/j.1523-1747.1999.00468.x. [DOI] [PubMed] [Google Scholar]
  86. Graeber T. G., Osmanian C., Jacks T., Housman D. E., Koch C. J., Lowe S. W., Giaccia A. J. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996 Jan 4;379(6560):88–91. doi: 10.1038/379088a0. [DOI] [PubMed] [Google Scholar]
  87. Gu W., Roeder R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997 Aug 22;90(4):595–606. doi: 10.1016/s0092-8674(00)80521-8. [DOI] [PubMed] [Google Scholar]
  88. Gu W., Shi X. L., Roeder R. G. Synergistic activation of transcription by CBP and p53. Nature. 1997 Jun 19;387(6635):819–823. doi: 10.1038/42972. [DOI] [PubMed] [Google Scholar]
  89. Hainaut P., Soussi T., Shomer B., Hollstein M., Greenblatt M., Hovig E., Harris C. C., Montesano R. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997 Jan 1;25(1):151–157. doi: 10.1093/nar/25.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Hansen S., Hupp T. R., Lane D. P. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group. J Biol Chem. 1996 Feb 16;271(7):3917–3924. doi: 10.1074/jbc.271.7.3917. [DOI] [PubMed] [Google Scholar]
  91. Hansen S., Lane D. P., Midgley C. A. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability. J Mol Biol. 1998 Jan 30;275(4):575–588. doi: 10.1006/jmbi.1997.1507. [DOI] [PubMed] [Google Scholar]
  92. Hansen S., Midgley C. A., Lane D. P., Freeman B. C., Morimoto R. I., Hupp T. R. Modification of two distinct COOH-terminal domains is required for murine p53 activation by bacterial Hsp70. J Biol Chem. 1996 Nov 29;271(48):30922–30928. doi: 10.1074/jbc.271.48.30922. [DOI] [PubMed] [Google Scholar]
  93. Hao M., Lowy A. M., Kapoor M., Deffie A., Liu G., Lozano G. Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem. 1996 Nov 15;271(46):29380–29385. doi: 10.1074/jbc.271.46.29380. [DOI] [PubMed] [Google Scholar]
  94. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993 Nov 19;75(4):805–816. doi: 10.1016/0092-8674(93)90499-g. [DOI] [PubMed] [Google Scholar]
  95. Harper J. W., Elledge S. J., Keyomarsi K., Dynlacht B., Tsai L. H., Zhang P., Dobrowolski S., Bai C., Connell-Crowley L., Swindell E. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 1995 Apr;6(4):387–400. doi: 10.1091/mbc.6.4.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997 May 15;387(6630):296–299. doi: 10.1038/387296a0. [DOI] [PubMed] [Google Scholar]
  97. Henderson C. J., Smith A. G., Ure J., Brown K., Bacon E. J., Wolf C. R. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5275–5280. doi: 10.1073/pnas.95.9.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Hengst L., Göpfert U., Lashuel H. A., Reed S. I. Complete inhibition of Cdk/cyclin by one molecule of p21(Cip1). Genes Dev. 1998 Dec 15;12(24):3882–3888. doi: 10.1101/gad.12.24.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Hermeking H., Lengauer C., Polyak K., He T. C., Zhang L., Thiagalingam S., Kinzler K. W., Vogelstein B. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997 Dec;1(1):3–11. doi: 10.1016/s1097-2765(00)80002-7. [DOI] [PubMed] [Google Scholar]
  100. Hirao A., Kong Y. Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S. J., Mak T. W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000 Mar 10;287(5459):1824–1827. doi: 10.1126/science.287.5459.1824. [DOI] [PubMed] [Google Scholar]
  101. Hoffmann R., Craik D. J., Pierens G., Bolger R. E., Otvos L., Jr Phosphorylation of the C-terminal sites of human p53 reduces non-sequence-specific DNA binding as modeled with synthetic peptides. Biochemistry. 1998 Sep 29;37(39):13755–13764. doi: 10.1021/bi980760a. [DOI] [PubMed] [Google Scholar]
  102. Holinger E. P., Chittenden T., Lutz R. J. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem. 1999 May 7;274(19):13298–13304. doi: 10.1074/jbc.274.19.13298. [DOI] [PubMed] [Google Scholar]
  103. Hollstein M., Shomer B., Greenblatt M., Soussi T., Hovig E., Montesano R., Harris C. C. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996 Jan 1;24(1):141–146. doi: 10.1093/nar/24.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  105. Huang L. C., Clarkin K. C., Wahl G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4827–4832. doi: 10.1073/pnas.93.10.4827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Hupp T. R. Development of physiological models to study stress protein responses. Methods Mol Biol. 2000;99:465–483. doi: 10.1385/1-59259-054-3:465. [DOI] [PubMed] [Google Scholar]
  107. Hupp T. R., Lane D. P. Allosteric activation of latent p53 tetramers. Curr Biol. 1994 Oct 1;4(10):865–875. doi: 10.1016/s0960-9822(00)00195-0. [DOI] [PubMed] [Google Scholar]
  108. Hupp T. R., Meek D. W., Midgley C. A., Lane D. P. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 1993 Jul 11;21(14):3167–3174. doi: 10.1093/nar/21.14.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Hupp T. R., Sparks A., Lane D. P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell. 1995 Oct 20;83(2):237–245. doi: 10.1016/0092-8674(95)90165-5. [DOI] [PubMed] [Google Scholar]
  110. Iwabuchi K., Bartel P. L., Li B., Marraccino R., Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6098–6102. doi: 10.1073/pnas.91.13.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Jayaraman L., Murthy K. G., Zhu C., Curran T., Xanthoudakis S., Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 1997 Mar 1;11(5):558–570. doi: 10.1101/gad.11.5.558. [DOI] [PubMed] [Google Scholar]
  112. Jayaraman L., Prives C. Covalent and noncovalent modifiers of the p53 protein. Cell Mol Life Sci. 1999 Jan;55(1):76–87. doi: 10.1007/s000180050271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Jeffrey P. D., Gorina S., Pavletich N. P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 1995 Mar 10;267(5203):1498–1502. doi: 10.1126/science.7878469. [DOI] [PubMed] [Google Scholar]
  114. Johnson C. R., Morin P. E., Arrowsmith C. H., Freire E. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry. 1995 Apr 25;34(16):5309–5316. doi: 10.1021/bi00016a002. [DOI] [PubMed] [Google Scholar]
  115. Jones J. M., Cui X. S., Medina D., Donehower L. A. Heterozygosity of p21WAF1/CIP1 enhances tumor cell proliferation and cyclin D1-associated kinase activity in a murine mammary cancer model. Cell Growth Differ. 1999 Apr;10(4):213–222. [PubMed] [Google Scholar]
  116. Jättelä M., Wissing D., Kokholm K., Kallunki T., Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 1998 Nov 2;17(21):6124–6134. doi: 10.1093/emboj/17.21.6124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J. C., Valent A., Minty A., Chalon P., Lelias J. M., Dumont X. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997 Aug 22;90(4):809–819. doi: 10.1016/s0092-8674(00)80540-1. [DOI] [PubMed] [Google Scholar]
  118. Kamijo T., Weber J. D., Zambetti G., Zindy F., Roussel M. F., Sherr C. J. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8292–8297. doi: 10.1073/pnas.95.14.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  120. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  121. Kaul S. C., Duncan E. L., Englezou A., Takano S., Reddel R. R., Mitsui Y., Wadhwa R. Malignant transformation of NIH3T3 cells by overexpression of mot-2 protein. Oncogene. 1998 Aug 20;17(7):907–911. doi: 10.1038/sj.onc.1202017. [DOI] [PubMed] [Google Scholar]
  122. Kelland L. R., Sharp S. Y., Rogers P. M., Myers T. G., Workman P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst. 1999 Nov 17;91(22):1940–1949. doi: 10.1093/jnci/91.22.1940. [DOI] [PubMed] [Google Scholar]
  123. Kern S. E., Kinzler K. W., Bruskin A., Jarosz D., Friedman P., Prives C., Vogelstein B. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991 Jun 21;252(5013):1708–1711. doi: 10.1126/science.2047879. [DOI] [PubMed] [Google Scholar]
  124. Khanna K. K., Keating K. E., Kozlov S., Scott S., Gatei M., Hobson K., Taya Y., Gabrielli B., Chan D., Lees-Miller S. P. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet. 1998 Dec;20(4):398–400. doi: 10.1038/3882. [DOI] [PubMed] [Google Scholar]
  125. Kiefer M. C., Brauer M. J., Powers V. C., Wu J. J., Umansky S. R., Tomei L. D., Barr P. J. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature. 1995 Apr 20;374(6524):736–739. doi: 10.1038/374736a0. [DOI] [PubMed] [Google Scholar]
  126. Kirn D., Hermiston T., McCormick F. ONYX-015: clinical data are encouraging. Nat Med. 1998 Dec;4(12):1341–1342. doi: 10.1038/3902. [DOI] [PubMed] [Google Scholar]
  127. Koumenis C., Giaccia A. Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol Cell Biol. 1997 Dec;17(12):7306–7316. doi: 10.1128/mcb.17.12.7306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Kubbutat M. H., Jones S. N., Vousden K. H. Regulation of p53 stability by Mdm2. Nature. 1997 May 15;387(6630):299–303. doi: 10.1038/387299a0. [DOI] [PubMed] [Google Scholar]
  129. Kussie P. H., Gorina S., Marechal V., Elenbaas B., Moreau J., Levine A. J., Pavletich N. P. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996 Nov 8;274(5289):948–953. doi: 10.1126/science.274.5289.948. [DOI] [PubMed] [Google Scholar]
  130. LaBaer J., Garrett M. D., Stevenson L. F., Slingerland J. M., Sandhu C., Chou H. S., Fattaey A., Harlow E. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997 Apr 1;11(7):847–862. doi: 10.1101/gad.11.7.847. [DOI] [PubMed] [Google Scholar]
  131. Lambert P. F., Kashanchi F., Radonovich M. F., Shiekhattar R., Brady J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem. 1998 Dec 4;273(49):33048–33053. doi: 10.1074/jbc.273.49.33048. [DOI] [PubMed] [Google Scholar]
  132. Lane D. P., Crawford L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979 Mar 15;278(5701):261–263. doi: 10.1038/278261a0. [DOI] [PubMed] [Google Scholar]
  133. Lane D. P. Exploiting the p53 pathway for cancer diagnosis and therapy. Br J Cancer. 1999 Jul;80 (Suppl 1):1–5. [PubMed] [Google Scholar]
  134. Lane D. P. Killing tumor cells with viruses--a question of specificity. Nat Med. 1998 Sep;4(9):1012–1013. doi: 10.1038/2000. [DOI] [PubMed] [Google Scholar]
  135. Laín S., Midgley C., Sparks A., Lane E. B., Lane D. P. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp Cell Res. 1999 May 1;248(2):457–472. doi: 10.1006/excr.1999.4433. [DOI] [PubMed] [Google Scholar]
  136. Laín S., Xirodimas D., Lane D. P. Accumulating active p53 in the nucleus by inhibition of nuclear export: a novel strategy to promote the p53 tumor suppressor function. Exp Cell Res. 1999 Dec 15;253(2):315–324. doi: 10.1006/excr.1999.4672. [DOI] [PubMed] [Google Scholar]
  137. Lin J., Chen J., Elenbaas B., Levine A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 1994 May 15;8(10):1235–1246. doi: 10.1101/gad.8.10.1235. [DOI] [PubMed] [Google Scholar]
  138. Lin J., Reichner C., Wu X., Levine A. J. Analysis of wild-type and mutant p21WAF-1 gene activities. Mol Cell Biol. 1996 Apr;16(4):1786–1793. doi: 10.1128/mcb.16.4.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Lin J., Teresky A. K., Levine A. J. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene. 1995 Jun 15;10(12):2387–2390. [PubMed] [Google Scholar]
  140. Linke S. P., Clarkin K. C., Di Leonardo A., Tsou A., Wahl G. M. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 1996 Apr 15;10(8):934–947. doi: 10.1101/gad.10.8.934. [DOI] [PubMed] [Google Scholar]
  141. Linzer D. I., Levine A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979 May;17(1):43–52. doi: 10.1016/0092-8674(79)90293-9. [DOI] [PubMed] [Google Scholar]
  142. Liu L., Scolnick D. M., Trievel R. C., Zhang H. B., Marmorstein R., Halazonetis T. D., Berger S. L. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999 Feb;19(2):1202–1209. doi: 10.1128/mcb.19.2.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Ljungman M., Zhang F. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene. 1996 Aug 15;13(4):823–831. [PubMed] [Google Scholar]
  144. Ljungman M., Zhang F., Chen F., Rainbow A. J., McKay B. C. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene. 1999 Jan 21;18(3):583–592. doi: 10.1038/sj.onc.1202356. [DOI] [PubMed] [Google Scholar]
  145. Lomax M. E., Barnes D. M., Hupp T. R., Picksley S. M., Camplejohn R. S. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene. 1998 Aug 6;17(5):643–649. doi: 10.1038/sj.onc.1201974. [DOI] [PubMed] [Google Scholar]
  146. Lowe S. W. Activation of p53 by oncogenes. Endocr Relat Cancer. 1999 Mar;6(1):45–48. doi: 10.1677/erc.0.0060045. [DOI] [PubMed] [Google Scholar]
  147. Lu H., Levine A. J. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5154–5158. doi: 10.1073/pnas.92.11.5154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Lu X., Lane D. P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell. 1993 Nov 19;75(4):765–778. doi: 10.1016/0092-8674(93)90496-d. [DOI] [PubMed] [Google Scholar]
  149. Luciani M. G., Hutchins J. R., Zheleva D., Hupp T. R. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. J Mol Biol. 2000 Jul 14;300(3):503–518. doi: 10.1006/jmbi.2000.3830. [DOI] [PubMed] [Google Scholar]
  150. Luo Y., Hurwitz J., Massagué J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature. 1995 May 11;375(6527):159–161. doi: 10.1038/375159a0. [DOI] [PubMed] [Google Scholar]
  151. Maki C. G. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem. 1999 Jun 4;274(23):16531–16535. doi: 10.1074/jbc.274.23.16531. [DOI] [PubMed] [Google Scholar]
  152. Maltzman W., Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol. 1984 Sep;4(9):1689–1694. doi: 10.1128/mcb.4.9.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Manon S., Chaudhuri B., Guérin M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett. 1997 Sep 22;415(1):29–32. doi: 10.1016/s0014-5793(97)01087-9. [DOI] [PubMed] [Google Scholar]
  154. Marechal V., Elenbaas B., Piette J., Nicolas J. C., Levine A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994 Nov;14(11):7414–7420. doi: 10.1128/mcb.14.11.7414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Mateu M. G., Fersht A. R. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J. 1998 May 15;17(10):2748–2758. doi: 10.1093/emboj/17.10.2748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Maxwell P. H., Wiesener M. S., Chang G. W., Clifford S. C., Vaux E. C., Cockman M. E., Wykoff C. C., Pugh C. W., Maher E. R., Ratcliffe P. J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999 May 20;399(6733):271–275. doi: 10.1038/20459. [DOI] [PubMed] [Google Scholar]
  157. May P., May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 1999 Dec 13;18(53):7621–7636. doi: 10.1038/sj.onc.1203285. [DOI] [PubMed] [Google Scholar]
  158. McDonald E. R., 3rd, Wu G. S., Waldman T., El-Deiry W. S. Repair Defect in p21 WAF1/CIP1 -/- human cancer cells. Cancer Res. 1996 May 15;56(10):2250–2255. [PubMed] [Google Scholar]
  159. Meira L. B., Cheo D. L., Hammer R. E., Burns D. K., Reis A., Friedberg E. C. Genetic interaction between HAP1/REF-1 and p53. Nat Genet. 1997 Oct;17(2):145–145. doi: 10.1038/ng1097-145. [DOI] [PubMed] [Google Scholar]
  160. Midgley C. A., Desterro J. M., Saville M. K., Howard S., Sparks A., Hay R. T., Lane D. P. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene. 2000 May 4;19(19):2312–2323. doi: 10.1038/sj.onc.1203593. [DOI] [PubMed] [Google Scholar]
  161. Midgley C. A., Lane D. P. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene. 1997 Sep 4;15(10):1179–1189. doi: 10.1038/sj.onc.1201459. [DOI] [PubMed] [Google Scholar]
  162. Milner J., Medcalf E. A. Temperature-dependent switching between "wild-type" and "mutant" forms of p53-Val135. J Mol Biol. 1990 Dec 5;216(3):481–484. doi: 10.1016/0022-2836(90)90371-R. [DOI] [PubMed] [Google Scholar]
  163. Miyashita T., Krajewski S., Krajewska M., Wang H. G., Lin H. K., Liebermann D. A., Hoffman B., Reed J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994 Jun;9(6):1799–1805. [PubMed] [Google Scholar]
  164. Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995 Jan 27;80(2):293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
  165. Mizzen C. A., Yang X. J., Kokubo T., Brownell J. E., Bannister A. J., Owen-Hughes T., Workman J., Wang L., Berger S. L., Kouzarides T. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell. 1996 Dec 27;87(7):1261–1270. doi: 10.1016/s0092-8674(00)81821-8. [DOI] [PubMed] [Google Scholar]
  166. Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992 Jun 26;69(7):1237–1245. doi: 10.1016/0092-8674(92)90644-r. [DOI] [PubMed] [Google Scholar]
  167. Montes de Oca Luna R., Wagner D. S., Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995 Nov 9;378(6553):203–206. doi: 10.1038/378203a0. [DOI] [PubMed] [Google Scholar]
  168. Mundt M., Hupp T., Fritsche M., Merkle C., Hansen S., Lane D., Groner B. Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potential. Oncogene. 1997 Jul 10;15(2):237–244. doi: 10.1038/sj.onc.1201174. [DOI] [PubMed] [Google Scholar]
  169. Mutoh M., Lung F. D., Long Y. Q., Roller P. P., Sikorski R. S., O'Connor P. M. A p21(Waf1/Cip1)carboxyl-terminal peptide exhibited cyclin-dependent kinase-inhibitory activity and cytotoxicity when introduced into human cells. Cancer Res. 1999 Jul 15;59(14):3480–3488. [PubMed] [Google Scholar]
  170. Nakajima T., Morita K., Tsunoda H., Imajoh-Ohmi S., Tanaka H., Yasuda H., Oda K. Stabilization of p53 by adenovirus E1A occurs through its amino-terminal region by modification of the ubiquitin-proteasome pathway. J Biol Chem. 1998 Aug 7;273(32):20036–20045. doi: 10.1074/jbc.273.32.20036. [DOI] [PubMed] [Google Scholar]
  171. Nakanishi M., Robetorye R. S., Adami G. R., Pereira-Smith O. M., Smith J. R. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. EMBO J. 1995 Feb 1;14(3):555–563. doi: 10.1002/j.1460-2075.1995.tb07031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Neuberg M., Buckbinder L., Seizinger B., Kley N. The p53/IGF-1 receptor axis in the regulation of programmed cell death. Endocrine. 1997 Aug;7(1):107–109. doi: 10.1007/BF02778075. [DOI] [PubMed] [Google Scholar]
  173. Nikolova P. V., Henckel J., Lane D. P., Fersht A. R. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14675–14680. doi: 10.1073/pnas.95.25.14675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Nitta M., Okamura H., Aizawa S., Yamaizumi M. Heat shock induces transient p53-dependent cell cycle arrest at G1/S. Oncogene. 1997 Jul 31;15(5):561–568. doi: 10.1038/sj.onc.1201210. [DOI] [PubMed] [Google Scholar]
  175. Ohta M., Nitta M., Yamaizumi M. High sensitivity of the ultraviolet-induced p53 response in ultraviolet-sensitive syndrome, a photosensitive disorder with a putative defect in deoxyribonucleic acid repair of actively transcribed genes. Mutat Res. 1999 Jan 26;433(1):23–32. doi: 10.1016/s0921-8777(98)00058-5. [DOI] [PubMed] [Google Scholar]
  176. Oliner J. D., Kinzler K. W., Meltzer P. S., George D. L., Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992 Jul 2;358(6381):80–83. doi: 10.1038/358080a0. [DOI] [PubMed] [Google Scholar]
  177. Oltvai Z. N., Korsmeyer S. J. Checkpoints of dueling dimers foil death wishes. Cell. 1994 Oct 21;79(2):189–192. doi: 10.1016/0092-8674(94)90188-0. [DOI] [PubMed] [Google Scholar]
  178. Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem. 1999 Dec 17;274(51):36031–36034. doi: 10.1074/jbc.274.51.36031. [DOI] [PubMed] [Google Scholar]
  179. Oren M., Rotter V. Introduction: p53--the first twenty years. Cell Mol Life Sci. 1999 Jan;55(1):9–11. doi: 10.1007/s000180050265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Park J. A., Kim K. W., Kim S. I., Lee S. K. Caspase 3 specifically cleaves p21WAF1/CIP1 in the earlier stage of apoptosis in SK-HEP-1 human hepatoma cells. Eur J Biochem. 1998 Oct 1;257(1):242–248. doi: 10.1046/j.1432-1327.1998.2570242.x. [DOI] [PubMed] [Google Scholar]
  181. Pearson G. D., Merrill G. F. Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J Biol Chem. 1998 Mar 6;273(10):5431–5434. doi: 10.1074/jbc.273.10.5431. [DOI] [PubMed] [Google Scholar]
  182. Picksley S. M., Vojtesek B., Sparks A., Lane D. P. Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene. 1994 Sep;9(9):2523–2529. [PubMed] [Google Scholar]
  183. Pietenpol J. A., Tokino T., Thiagalingam S., el-Deiry W. S., Kinzler K. W., Vogelstein B. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):1998–2002. doi: 10.1073/pnas.91.6.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Pinhasi-Kimhi O., Michalovitz D., Ben-Zeev A., Oren M. Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature. 1986 Mar 13;320(6058):182–184. doi: 10.1038/320182a0. [DOI] [PubMed] [Google Scholar]
  185. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  186. Pomerantz J., Schreiber-Agus N., Liégeois N. J., Silverman A., Alland L., Chin L., Potes J., Chen K., Orlow I., Lee H. W. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998 Mar 20;92(6):713–723. doi: 10.1016/s0092-8674(00)81400-2. [DOI] [PubMed] [Google Scholar]
  187. Ponchel F., Milner J. Temperature sensitivity of human wild-type and mutant p53 proteins expressed in vivo. Br J Cancer. 1998 May;77(10):1555–1561. doi: 10.1038/bjc.1998.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Pritchard D. M., Potten C. S., Hickman J. A. The relationships between p53-dependent apoptosis, inhibition of proliferation, and 5-fluorouracil-induced histopathology in murine intestinal epithelia. Cancer Res. 1998 Dec 1;58(23):5453–5465. [PubMed] [Google Scholar]
  189. Pritchard D. M., Watson A. J., Potten C. S., Jackman A. L., Hickman J. A. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1795–1799. doi: 10.1073/pnas.94.5.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Renzing J., Hansen S., Lane D. P. Oxidative stress is involved in the UV activation of p53. J Cell Sci. 1996 May;109(Pt 5):1105–1112. doi: 10.1242/jcs.109.5.1105. [DOI] [PubMed] [Google Scholar]
  191. Rodrigues N. R., Rowan A., Smith M. E., Kerr I. B., Bodmer W. F., Gannon J. V., Lane D. P. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7555–7559. doi: 10.1073/pnas.87.19.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Rodriguez M. S., Desterro J. M., Lain S., Midgley C. A., Lane D. P., Hay R. T. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999 Nov 15;18(22):6455–6461. doi: 10.1093/emboj/18.22.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Rogulski K. R., Freytag S. O., Zhang K., Gilbert J. D., Paielli D. L., Kim J. H., Heise C. C., Kirn D. H. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res. 2000 Mar 1;60(5):1193–1196. [PubMed] [Google Scholar]
  194. Rossé T., Olivier R., Monney L., Rager M., Conus S., Fellay I., Jansen B., Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 1998 Jan 29;391(6666):496–499. doi: 10.1038/35160. [DOI] [PubMed] [Google Scholar]
  195. Roth J., Dobbelstein M., Freedman D. A., Shenk T., Levine A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998 Jan 15;17(2):554–564. doi: 10.1093/emboj/17.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Rousseau D., Cannella D., Boulaire J., Fitzgerald P., Fotedar A., Fotedar R. Growth inhibition by CDK-cyclin and PCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene. 1999 May 27;18(21):3290–3302. doi: 10.1038/sj.onc.1202681. [DOI] [PubMed] [Google Scholar]
  197. Sakaguchi K., Herrera J. E., Saito S., Miki T., Bustin M., Vassilev A., Anderson C. W., Appella E. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998 Sep 15;12(18):2831–2841. doi: 10.1101/gad.12.18.2831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Sakaguchi K., Saito S., Higashimoto Y., Roy S., Anderson C. W., Appella E. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem. 2000 Mar 31;275(13):9278–9283. doi: 10.1074/jbc.275.13.9278. [DOI] [PubMed] [Google Scholar]
  199. Sakaguchi K., Sakamoto H., Lewis M. S., Anderson C. W., Erickson J. W., Appella E., Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 1997 Aug 19;36(33):10117–10124. doi: 10.1021/bi970759w. [DOI] [PubMed] [Google Scholar]
  200. Sakaguchi K., Sakamoto H., Xie D., Erickson J. W., Lewis M. S., Anderson C. W., Appella E. Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. J Protein Chem. 1997 Jul;16(5):553–556. doi: 10.1023/a:1026334116189. [DOI] [PubMed] [Google Scholar]
  201. Sartorelli V., Puri P. L., Hamamori Y., Ogryzko V., Chung G., Nakatani Y., Wang J. Y., Kedes L. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell. 1999 Nov;4(5):725–734. doi: 10.1016/s1097-2765(00)80383-4. [DOI] [PubMed] [Google Scholar]
  202. Satyal S. H., Chen D., Fox S. G., Kramer J. M., Morimoto R. I. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev. 1998 Jul 1;12(13):1962–1974. doi: 10.1101/gad.12.13.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Savio M., Stivala L. A., Scovassi A. I., Bianchi L., Prosperi E. p21waf1/cip1 protein associates with the detergent-insoluble form of PCNA concomitantly with disassembly of PCNA at nucleotide excision repair sites. Oncogene. 1996 Oct 17;13(8):1591–1598. [PubMed] [Google Scholar]
  204. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990 Dec 21;63(6):1129–1136. doi: 10.1016/0092-8674(90)90409-8. [DOI] [PubMed] [Google Scholar]
  205. Scheibel T., Buchner J. The Hsp90 complex--a super-chaperone machine as a novel drug target. Biochem Pharmacol. 1998 Sep 15;56(6):675–682. doi: 10.1016/s0006-2952(98)00120-8. [DOI] [PubMed] [Google Scholar]
  206. Schlichtholz B., Bouchind'homme B., Pagés S., Martin E., Liva S., Magdelenat H., Sastre-Garau X., Stoppa-Lyonnet D., Soussi T. p53 mutations in BRCA1-associated familial breast cancer. Lancet. 1998 Aug 22;352(9128):622–622. doi: 10.1016/S0140-6736(05)79576-3. [DOI] [PubMed] [Google Scholar]
  207. Scolnick D. M., Chehab N. H., Stavridi E. S., Lien M. C., Caruso L., Moran E., Berger S. L., Halazonetis T. D. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 1997 Sep 1;57(17):3693–3696. [PubMed] [Google Scholar]
  208. Scott M. T., Morrice N., Ball K. L. Reversible phosphorylation at the C-terminal regulatory domain of p21(Waf1/Cip1) modulates proliferating cell nuclear antigen binding. J Biol Chem. 2000 Apr 14;275(15):11529–11537. doi: 10.1074/jbc.275.15.11529. [DOI] [PubMed] [Google Scholar]
  209. Selivanova G., Iotsova V., Okan I., Fritsche M., Ström M., Groner B., Grafström R. C., Wiman K. G. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 1997 Jun;3(6):632–638. doi: 10.1038/nm0697-632. [DOI] [PubMed] [Google Scholar]
  210. Selivanova G., Ryabchenko L., Jansson E., Iotsova V., Wiman K. G. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol Cell Biol. 1999 May;19(5):3395–3402. doi: 10.1128/mcb.19.5.3395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Shieh S. Y., Ahn J., Tamai K., Taya Y., Prives C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 2000 Feb 1;14(3):289–300. [PMC free article] [PubMed] [Google Scholar]
  212. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  213. Shikama N., Lee C. W., France S., Delavaine L., Lyon J., Krstic-Demonacos M., La Thangue N. B. A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999 Sep;4(3):365–376. doi: 10.1016/s1097-2765(00)80338-x. [DOI] [PubMed] [Google Scholar]
  214. Sidransky D., Mikkelsen T., Schwechheimer K., Rosenblum M. L., Cavanee W., Vogelstein B. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature. 1992 Feb 27;355(6363):846–847. doi: 10.1038/355846a0. [DOI] [PubMed] [Google Scholar]
  215. Siliciano J. D., Canman C. E., Taya Y., Sakaguchi K., Appella E., Kastan M. B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997 Dec 15;11(24):3471–3481. doi: 10.1101/gad.11.24.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Smart P., Lane E. B., Lane D. P., Midgley C., Vojtesek B., Laín S. Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene. 1999 Dec 2;18(51):7378–7386. doi: 10.1038/sj.onc.1203260. [DOI] [PubMed] [Google Scholar]
  217. Soga S., Neckers L. M., Schulte T. W., Shiotsu Y., Akasaka K., Narumi H., Agatsuma T., Ikuina Y., Murakata C., Tamaoki T. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res. 1999 Jun 15;59(12):2931–2938. [PubMed] [Google Scholar]
  218. Stephen C. W., Helminen P., Lane D. P. Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. J Mol Biol. 1995 Apr 21;248(1):58–78. doi: 10.1006/jmbi.1995.0202. [DOI] [PubMed] [Google Scholar]
  219. Stewart Z. A., Leach S. D., Pietenpol J. A. p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol. 1999 Jan;19(1):205–215. doi: 10.1128/mcb.19.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Stott F. J., Bates S., James M. C., McConnell B. B., Starborg M., Brookes S., Palmero I., Ryan K., Hara E., Vousden K. H. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998 Sep 1;17(17):5001–5014. doi: 10.1093/emboj/17.17.5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Stürzbecher H. W., Brain R., Addison C., Rudge K., Remm M., Grimaldi M., Keenan E., Jenkins J. R. A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene. 1992 Aug;7(8):1513–1523. [PubMed] [Google Scholar]
  222. Sugano T., Nitta M., Ohmori H., Yamaizumi M. Nuclear accumulation of p53 in normal human fibroblasts is induced by various cellular stresses which evoke the heat shock response, independently of the cell cycle. Jpn J Cancer Res. 1995 May;86(5):415–418. doi: 10.1111/j.1349-7006.1995.tb03072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Tan M., Li S., Swaroop M., Guan K., Oberley L. W., Sun Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999 Apr 23;274(17):12061–12066. doi: 10.1074/jbc.274.17.12061. [DOI] [PubMed] [Google Scholar]
  224. Thukral S. K., Blain G. C., Chang K. K., Fields S. Distinct residues of human p53 implicated in binding to DNA, simian virus 40 large T antigen, 53BP1, and 53BP2. Mol Cell Biol. 1994 Dec;14(12):8315–8321. doi: 10.1128/mcb.14.12.8315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Thut C. J., Chen J. L., Klemm R., Tjian R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science. 1995 Jan 6;267(5194):100–104. doi: 10.1126/science.7809597. [DOI] [PubMed] [Google Scholar]
  226. Tibbetts R. S., Brumbaugh K. M., Williams J. M., Sarkaria J. N., Cliby W. A., Shieh S. Y., Taya Y., Prives C., Abraham R. T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999 Jan 15;13(2):152–157. doi: 10.1101/gad.13.2.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Tominaga K., Morisaki H., Kaneko Y., Fujimoto A., Tanaka T., Ohtsubo M., Hirai M., Okayama H., Ikeda K., Nakanishi M. Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. J Biol Chem. 1999 Oct 29;274(44):31463–31467. doi: 10.1074/jbc.274.44.31463. [DOI] [PubMed] [Google Scholar]
  228. Ueno M., Masutani H., Arai R. J., Yamauchi A., Hirota K., Sakai T., Inamoto T., Yamaoka Y., Yodoi J., Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999 Dec 10;274(50):35809–35815. doi: 10.1074/jbc.274.50.35809. [DOI] [PubMed] [Google Scholar]
  229. Uesugi M., Verdine G. L. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14801–14806. doi: 10.1073/pnas.96.26.14801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Unger T., Sionov R. V., Moallem E., Yee C. L., Howley P. M., Oren M., Haupt Y. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene. 1999 May 27;18(21):3205–3212. doi: 10.1038/sj.onc.1202656. [DOI] [PubMed] [Google Scholar]
  231. Venot C., Maratrat M., Sierra V., Conseiller E., Debussche L. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene. 1999 Apr 8;18(14):2405–2410. doi: 10.1038/sj.onc.1202539. [DOI] [PubMed] [Google Scholar]
  232. Vile G. F. Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts. FEBS Lett. 1997 Jul 21;412(1):70–74. doi: 10.1016/s0014-5793(97)00748-5. [DOI] [PubMed] [Google Scholar]
  233. Vile G. F., Tyrrell R. M. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic Biol Med. 1995 Apr;18(4):721–730. doi: 10.1016/0891-5849(94)00192-m. [DOI] [PubMed] [Google Scholar]
  234. Vojtesek B., Lane D. P. Regulation of p53 protein expression in human breast cancer cell lines. J Cell Sci. 1993 Jul;105(Pt 3):607–612. doi: 10.1242/jcs.105.3.607. [DOI] [PubMed] [Google Scholar]
  235. Wadhwa R., Takano S., Mitsui Y., Kaul S. C. NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein. Cell Res. 1999 Dec;9(4):261–269. doi: 10.1038/sj.cr.7290025. [DOI] [PubMed] [Google Scholar]
  236. Wadhwa R., Takano S., Robert M., Yoshida A., Nomura H., Reddel R. R., Mitsui Y., Kaul S. C. Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem. 1998 Nov 6;273(45):29586–29591. doi: 10.1074/jbc.273.45.29586. [DOI] [PubMed] [Google Scholar]
  237. Wang S., Guo M., Ouyang H., Li X., Cordon-Cardo C., Kurimasa A., Chen D. J., Fuks Z., Ling C. C., Li G. C. The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1584–1588. doi: 10.1073/pnas.97.4.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Wang Y. A., Elson A., Leder P. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14590–14595. doi: 10.1073/pnas.94.26.14590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Wang Y., Prives C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature. 1995 Jul 6;376(6535):88–91. doi: 10.1038/376088a0. [DOI] [PubMed] [Google Scholar]
  240. Warbrick E., Lane D. P., Glover D. M., Cox L. S. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr Biol. 1995 Mar 1;5(3):275–282. doi: 10.1016/s0960-9822(95)00058-3. [DOI] [PubMed] [Google Scholar]
  241. Waterman M. J., Stavridi E. S., Waterman J. L., Halazonetis T. D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998 Jun;19(2):175–178. doi: 10.1038/542. [DOI] [PubMed] [Google Scholar]
  242. Weber J. D., Taylor L. J., Roussel M. F., Sherr C. J., Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999 May;1(1):20–26. doi: 10.1038/8991. [DOI] [PubMed] [Google Scholar]
  243. Webley K., Bond J. A., Jones C. J., Blaydes J. P., Craig A., Hupp T., Wynford-Thomas D. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol. 2000 Apr;20(8):2803–2808. doi: 10.1128/mcb.20.8.2803-2808.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Webster G. A., Perkins N. D. Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol. 1999 May;19(5):3485–3495. doi: 10.1128/mcb.19.5.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Whitesell L., Sutphin P. D., Pulcini E. J., Martinez J. D., Cook P. H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol. 1998 Mar;18(3):1517–1524. doi: 10.1128/mcb.18.3.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Whitesell L., Sutphin P., An W. G., Schulte T., Blagosklonny M. V., Neckers L. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene. 1997 Jun 12;14(23):2809–2816. doi: 10.1038/sj.onc.1201120. [DOI] [PubMed] [Google Scholar]
  247. Whiteside S. T., Israël A. I kappa B proteins: structure, function and regulation. Semin Cancer Biol. 1997 Apr;8(2):75–82. doi: 10.1006/scbi.1997.0058. [DOI] [PubMed] [Google Scholar]
  248. Williams A. C., Collard T. J., Paraskeva C. An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene. 1999 May 27;18(21):3199–3204. doi: 10.1038/sj.onc.1202660. [DOI] [PubMed] [Google Scholar]
  249. Wong K. B., DeDecker B. S., Freund S. M., Proctor M. R., Bycroft M., Fersht A. R. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8438–8442. doi: 10.1073/pnas.96.15.8438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Wu X., Bayle J. H., Olson D., Levine A. J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993 Jul;7(7A):1126–1132. doi: 10.1101/gad.7.7a.1126. [DOI] [PubMed] [Google Scholar]
  251. Xiong Y., Zhang H., Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 1993 Aug;7(8):1572–1583. doi: 10.1101/gad.7.8.1572. [DOI] [PubMed] [Google Scholar]
  252. Xirodimas D. P., Lane D. P. Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling. J Biol Chem. 1999 Sep 24;274(39):28042–28049. doi: 10.1074/jbc.274.39.28042. [DOI] [PubMed] [Google Scholar]
  253. Xu Y., Yang E. M., Brugarolas J., Jacks T., Baltimore D. Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm-/- mice. Mol Cell Biol. 1998 Jul;18(7):4385–4390. doi: 10.1128/mcb.18.7.4385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Yamaizumi M., Sugano T. U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene. 1994 Oct;9(10):2775–2784. [PubMed] [Google Scholar]
  255. Yang A., Kaghad M., Wang Y., Gillett E., Fleming M. D., Dötsch V., Andrews N. C., Caput D., McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998 Sep;2(3):305–316. doi: 10.1016/s1097-2765(00)80275-0. [DOI] [PubMed] [Google Scholar]
  256. You L., Yang C. T., Jablons D. M. ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 2000 Feb 15;60(4):1009–1013. [PubMed] [Google Scholar]
  257. Yu J., Zhang L., Hwang P. M., Rago C., Kinzler K. W., Vogelstein B. Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14517–14522. doi: 10.1073/pnas.96.25.14517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Yuan Z. M., Huang Y., Ishiko T., Nakada S., Utsugisawa T., Shioya H., Utsugisawa Y., Yokoyama K., Weichselbaum R., Shi Y. Role for p300 in stabilization of p53 in the response to DNA damage. J Biol Chem. 1999 Jan 22;274(4):1883–1886. doi: 10.1074/jbc.274.4.1883. [DOI] [PubMed] [Google Scholar]
  259. Zhang H., Hannon G. J., Beach D. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 1994 Aug 1;8(15):1750–1758. doi: 10.1101/gad.8.15.1750. [DOI] [PubMed] [Google Scholar]
  260. Zhang H., Xiong Y., Beach D. Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell. 1993 Sep;4(9):897–906. doi: 10.1091/mbc.4.9.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Zhang Y., Xiong Y., Yarbrough W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998 Mar 20;92(6):725–734. doi: 10.1016/s0092-8674(00)81401-4. [DOI] [PubMed] [Google Scholar]
  262. Zhao R., Gish K., Murphy M., Yin Y., Notterman D., Hoffman W. H., Tom E., Mack D. H., Levine A. J. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 2000 Apr 15;14(8):981–993. [PMC free article] [PubMed] [Google Scholar]
  263. Zindy F., Eischen C. M., Randle D. H., Kamijo T., Cleveland J. L., Sherr C. J., Roussel M. F. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 1998 Aug 1;12(15):2424–2433. doi: 10.1101/gad.12.15.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. de Stanchina E., McCurrach M. E., Zindy F., Shieh S. Y., Ferbeyre G., Samuelson A. V., Prives C., Roussel M. F., Sherr C. J., Lowe S. W. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 1998 Aug 1;12(15):2434–2442. doi: 10.1101/gad.12.15.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. de Vries A., Berg R. J., Wijnhoven S., Westerman A., Wester P. W., van Kreijl C. F., Capel P. J., de Gruijl F. R., van Kranen H. J., van Steeg H. XPA-deficiency in hairless mice causes a shift in skin tumor types and mutational target genes after exposure to low doses of U.V.B. Oncogene. 1998 Apr 30;16(17):2205–2212. doi: 10.1038/sj.onc.1201744. [DOI] [PubMed] [Google Scholar]
  266. el-Deiry W. S., Kern S. E., Pietenpol J. A., Kinzler K. W., Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992 Apr;1(1):45–49. doi: 10.1038/ng0492-45. [DOI] [PubMed] [Google Scholar]
  267. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES