Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 1;353(Pt 3):417–439. doi: 10.1042/0264-6021:3530417

Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

V Janssens 1, J Goris 1
PMCID: PMC1221586  PMID: 11171037

Abstract

Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.

Full Text

The Full Text of this article is available as a PDF (450.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D., Podar K., Pacher M., Kubicek M., Welzel N., Hemmings B. A., Dilworth S. M., Mischak H., Kolch W., Baccarini M. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem. 2000 Jul 21;275(29):22300–22304. doi: 10.1074/jbc.M003259200. [DOI] [PubMed] [Google Scholar]
  2. Adachi Y., Pavlakis G. N., Copeland T. D. Identification of in vivo phosphorylation sites of SET, a nuclear phosphoprotein encoded by the translocation breakpoint in acute undifferentiated leukemia. FEBS Lett. 1994 Mar 7;340(3):231–235. doi: 10.1016/0014-5793(94)80144-4. [DOI] [PubMed] [Google Scholar]
  3. Adler H. T., Nallaseth F. S., Walter G., Tkachuk D. C. HRX leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. J Biol Chem. 1997 Nov 7;272(45):28407–28414. doi: 10.1074/jbc.272.45.28407. [DOI] [PubMed] [Google Scholar]
  4. Agostinis P., Derua R., Sarno S., Goris J., Merlevede W. Specificity of the polycation-stimulated (type-2A) and ATP,Mg-dependent (type-1) protein phosphatases toward substrates phosphorylated by P34cdc2 kinase. Eur J Biochem. 1992 Apr 1;205(1):241–248. doi: 10.1111/j.1432-1033.1992.tb16774.x. [DOI] [PubMed] [Google Scholar]
  5. Agostinis P., Donella-Deana A., Van Hoof C., Cesaro L., Brunati A. M., Ruzzene M., Merlevede W., Pinna L. A., Goris J. A comparative study of the phosphotyrosyl phosphatase specificity of protein phosphatase type 2A and phosphotyrosyl phosphatase type 1B using phosphopeptides and the phosphoproteins p50/HS1, c-Fgr and Lyn. Eur J Biochem. 1996 Mar 1;236(2):548–557. doi: 10.1111/j.1432-1033.1996.00548.x. [DOI] [PubMed] [Google Scholar]
  6. Agostinis P., Goris J., Pinna L. A., Marchiori F., Perich J. W., Meyer H. E., Merlevede W. Synthetic peptides as model substrates for the study of the specificity of the polycation-stimulated protein phosphatases. Eur J Biochem. 1990 Apr 30;189(2):235–241. doi: 10.1111/j.1432-1033.1990.tb15482.x. [DOI] [PubMed] [Google Scholar]
  7. Agostinis P., Goris J., Waelkens E., Pinna L. A., Marchiori F., Merlevede W. Dephosphorylation of phosphoproteins and synthetic phosphopeptides. Study of the specificity of the polycation-stimulated and MgATP-dependent phosphorylase phosphatases. J Biol Chem. 1987 Jan 25;262(3):1060–1064. [PubMed] [Google Scholar]
  8. Al-Murrani S. W., Woodgett J. R., Damuni Z. Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochem J. 1999 Jul 15;341(Pt 2):293–298. [PMC free article] [PubMed] [Google Scholar]
  9. Alessi D. R., Gomez N., Moorhead G., Lewis T., Keyse S. M., Cohen P. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol. 1995 Mar 1;5(3):283–295. doi: 10.1016/s0960-9822(95)00059-5. [DOI] [PubMed] [Google Scholar]
  10. Altiok S., Xu M., Spiegelman B. M. PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev. 1997 Aug 1;11(15):1987–1998. doi: 10.1101/gad.11.15.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Anderson N. G., Maller J. L., Tonks N. K., Sturgill T. W. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature. 1990 Feb 15;343(6259):651–653. doi: 10.1038/343651a0. [DOI] [PubMed] [Google Scholar]
  12. Andjelković M., Jakubowicz T., Cron P., Ming X. F., Han J. W., Hemmings B. A. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5699–5704. doi: 10.1073/pnas.93.12.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Andjelković N., Zolnierowicz S., Van Hoof C., Goris J., Hemmings B. A. The catalytic subunit of protein phosphatase 2A associates with the translation termination factor eRF1. EMBO J. 1996 Dec 16;15(24):7156–7167. [PMC free article] [PubMed] [Google Scholar]
  14. Andrade M. A., Bork P. HEAT repeats in the Huntington's disease protein. Nat Genet. 1995 Oct;11(2):115–116. doi: 10.1038/ng1095-115. [DOI] [PubMed] [Google Scholar]
  15. Arino J., Woon C. W., Brautigan D. L., Miller T. B., Jr, Johnson G. L. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4252–4256. doi: 10.1073/pnas.85.12.4252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ariño J., Pérez-Callejón E., Cunillera N., Camps M., Posas F., Ferrer A. Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Mol Biol. 1993 Feb;21(3):475–485. doi: 10.1007/BF00028805. [DOI] [PubMed] [Google Scholar]
  17. Baharians Z., Schönthal A. H. Autoregulation of protein phosphatase type 2A expression. J Biol Chem. 1998 Jul 24;273(30):19019–19024. doi: 10.1074/jbc.273.30.19019. [DOI] [PubMed] [Google Scholar]
  18. Baharians Z., Schönthal A. H. Reduction of Ha-ras-induced cellular transformation by elevated expression of protein phosphatase type 2A. Mol Carcinog. 1999 Apr;24(4):246–254. doi: 10.1002/(sici)1098-2744(199904)24:4<246::aid-mc2>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  19. Ballou L. M., Jenö P., Thomas G. Protein phosphatase 2A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem. 1988 Jan 25;263(3):1188–1194. [PubMed] [Google Scholar]
  20. Bastians H., Topper L. M., Gorbsky G. L., Ruderman J. V. Cell cycle-regulated proteolysis of mitotic target proteins. Mol Biol Cell. 1999 Nov;10(11):3927–3941. doi: 10.1091/mbc.10.11.3927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Baysal B. E., Farr J. E., Goss J. R., Devlin B., Richard C. W., 3rd Genomic organization and precise physical location of protein phosphatase 2A regulatory subunit A beta isoform gene on chromosome band 11q23. Gene. 1998 Sep 14;217(1-2):107–116. doi: 10.1016/s0378-1119(98)00350-3. [DOI] [PubMed] [Google Scholar]
  22. Begum N., Ragolia L. Role of janus kinase-2 in insulin-mediated phosphorylation and inactivation of protein phosphatase-2A and its impact on upstream insulin signalling components. Biochem J. 1999 Dec 15;344(Pt 3):895–901. [PMC free article] [PubMed] [Google Scholar]
  23. Begum N., Ragolia L. cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J Biol Chem. 1996 Dec 6;271(49):31166–31171. doi: 10.1074/jbc.271.49.31166. [DOI] [PubMed] [Google Scholar]
  24. Berndt N., Dohadwala M., Liu C. W. Constitutively active protein phosphatase 1alpha causes Rb-dependent G1 arrest in human cancer cells. Curr Biol. 1997 Jun 1;7(6):375–386. doi: 10.1016/s0960-9822(06)00185-0. [DOI] [PubMed] [Google Scholar]
  25. Berry M., Gehring W. Phosphorylation status of the SCR homeodomain determines its functional activity: essential role for protein phosphatase 2A,B'. EMBO J. 2000 Jun 15;19(12):2946–2957. doi: 10.1093/emboj/19.12.2946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Billingsley M. L., Kincaid R. L. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J. 1997 May 1;323(Pt 3):577–591. doi: 10.1042/bj3230577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Borgne A., Meijer L. Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem. 1996 Nov 1;271(44):27847–27854. doi: 10.1074/jbc.271.44.27847. [DOI] [PubMed] [Google Scholar]
  29. Bosch M., Cayla X., Van Hoof C., Hemmings B. A., Ozon R., Merlevede W., Goris J. The PR55 and PR65 subunits of protein phosphatase 2A from Xenopus laevis. molecular cloning and developmental regulation of expression. Eur J Biochem. 1995 Jun 15;230(3):1037–1045. doi: 10.1111/j.1432-1033.1995.tb20653.x. [DOI] [PubMed] [Google Scholar]
  30. Brewis N. D., Street A. J., Prescott A. R., Cohen P. T. PPX, a novel protein serine/threonine phosphatase localized to centrosomes. EMBO J. 1993 Mar;12(3):987–996. doi: 10.1002/j.1460-2075.1993.tb05739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bryant J. C., Westphal R. S., Wadzinski B. E. Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J. 1999 Apr 15;339(Pt 2):241–246. [PMC free article] [PubMed] [Google Scholar]
  32. Cairns J., Qin S., Philp R., Tan Y. H., Guy G. R. Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem. 1994 Mar 25;269(12):9176–9183. [PubMed] [Google Scholar]
  33. Calin G. A., di Iasio M. G., Caprini E., Vorechovsky I., Natali P. G., Sozzi G., Croce C. M., Barbanti-Brodano G., Russo G., Negrini M. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene. 2000 Feb 24;19(9):1191–1195. doi: 10.1038/sj.onc.1203389. [DOI] [PubMed] [Google Scholar]
  34. Campbell K. S., Auger K. R., Hemmings B. A., Roberts T. M., Pallas D. C. Identification of regions in polyomavirus middle T and small t antigens important for association with protein phosphatase 2A. J Virol. 1995 Jun;69(6):3721–3728. doi: 10.1128/jvi.69.6.3721-3728.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cayla X., Ballmer-Hofer K., Merlevede W., Goris J. Phosphatase 2A associated with polyomavirus small-T or middle-T antigen is an okadaic acid-sensitive tyrosyl phosphatase. Eur J Biochem. 1993 May 15;214(1):281–286. doi: 10.1111/j.1432-1033.1993.tb17922.x. [DOI] [PubMed] [Google Scholar]
  36. Cayla X., Goris J., Hermann J., Hendrix P., Ozon R., Merlevede W. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry. 1990 Jan 23;29(3):658–667. doi: 10.1021/bi00455a010. [DOI] [PubMed] [Google Scholar]
  37. Cayla X., Van Hoof C., Bosch M., Waelkens E., Vandekerckhove J., Peeters B., Merlevede W., Goris J. Molecular cloning, expression, and characterization of PTPA, a protein that activates the tyrosyl phosphatase activity of protein phosphatase 2A. J Biol Chem. 1994 Jun 3;269(22):15668–15675. [PubMed] [Google Scholar]
  38. Cegielska A., Shaffer S., Derua R., Goris J., Virshup D. M. Different oligomeric forms of protein phosphatase 2A activate and inhibit simian virus 40 DNA replication. Mol Cell Biol. 1994 Jul;14(7):4616–4623. doi: 10.1128/mcb.14.7.4616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Chen J., Martin B. L., Brautigan D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science. 1992 Aug 28;257(5074):1261–1264. doi: 10.1126/science.1325671. [DOI] [PubMed] [Google Scholar]
  40. Chen J., Parsons S., Brautigan D. L. Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. J Biol Chem. 1994 Mar 18;269(11):7957–7962. [PubMed] [Google Scholar]
  41. Chen J., Peterson R. T., Schreiber S. L. Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun. 1998 Jun 29;247(3):827–832. doi: 10.1006/bbrc.1998.8792. [DOI] [PubMed] [Google Scholar]
  42. Chen M. X., McPartlin A. E., Brown L., Chen Y. H., Barker H. M., Cohen P. T. A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J. 1994 Sep 15;13(18):4278–4290. doi: 10.1002/j.1460-2075.1994.tb06748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Chen R. H., Miettinen P. J., Maruoka E. M., Choy L., Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-beta receptor. Nature. 1995 Oct 12;377(6549):548–552. doi: 10.1038/377548a0. [DOI] [PubMed] [Google Scholar]
  44. Cheng S. H., Harvey R., Espino P. C., Semba K., Yamamoto T., Toyoshima K., Smith A. E. Peptide antibodies to the human c-fyn gene product demonstrate pp59c-fyn is capable of complex formation with the middle-T antigen of polyomavirus. EMBO J. 1988 Dec 1;7(12):3845–3855. doi: 10.1002/j.1460-2075.1988.tb03270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Chernoff J., Li H. C., Cheng Y. S., Chen L. B. Characterization of a phosphotyrosyl protein phosphatase activity associated with a phosphoseryl protein phosphatase of Mr = 95,000 from bovine heart. J Biol Chem. 1983 Jun 25;258(12):7852–7857. [PubMed] [Google Scholar]
  46. Chung H., Nairn A. C., Murata K., Brautigan D. L. Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. Biochemistry. 1999 Aug 10;38(32):10371–10376. doi: 10.1021/bi990902g. [DOI] [PubMed] [Google Scholar]
  47. Clarke P. R., Hoffmann I., Draetta G., Karsenti E. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol Biol Cell. 1993 Apr;4(4):397–411. doi: 10.1091/mbc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Cohen P. T., Brewis N. D., Hughes V., Mann D. J. Protein serine/threonine phosphatases; an expanding family. FEBS Lett. 1990 Aug 1;268(2):355–359. doi: 10.1016/0014-5793(90)81285-v. [DOI] [PubMed] [Google Scholar]
  49. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  50. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  51. Cormier P., Osborne H. B., Bassez T., Poulhe R., Bellé R., Mulner-Lorillon O. Protein phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell division. FEBS Lett. 1991 Dec 16;295(1-3):185–188. doi: 10.1016/0014-5793(91)81414-4. [DOI] [PubMed] [Google Scholar]
  52. Courtneidge S. A., Heber A. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell. 1987 Sep 25;50(7):1031–1037. doi: 10.1016/0092-8674(87)90169-3. [DOI] [PubMed] [Google Scholar]
  53. Courtneidge S. A., Smith A. E. Polyoma virus transforming protein associates with the product of the c-src cellular gene. Nature. 1983 Jun 2;303(5916):435–439. doi: 10.1038/303435a0. [DOI] [PubMed] [Google Scholar]
  54. Csortos C., Zolnierowicz S., Bakó E., Durbin S. D., DePaoli-Roach A. A. High complexity in the expression of the B' subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J Biol Chem. 1996 Feb 2;271(5):2578–2588. doi: 10.1074/jbc.271.5.2578. [DOI] [PubMed] [Google Scholar]
  55. Damuni Z., Xiong H., Li M. Autophosphorylation-activated protein kinase inactivates the protein tyrosine phosphatase activity of protein phosphatase 2A. FEBS Lett. 1994 Oct 3;352(3):311–314. doi: 10.1016/0014-5793(94)00981-3. [DOI] [PubMed] [Google Scholar]
  56. Davare M. A., Horne M. C., Hell J. W. Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem. 2000 Dec 15;275(50):39710–39717. doi: 10.1074/jbc.M005462200. [DOI] [PubMed] [Google Scholar]
  57. De Baere I., Derua R., Janssens V., Van Hoof C., Waelkens E., Merlevede W., Goris J. Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry. 1999 Dec 14;38(50):16539–16547. doi: 10.1021/bi991646a. [DOI] [PubMed] [Google Scholar]
  58. DeCaprio J. A., Ludlow J. W., Figge J., Shew J. Y., Huang C. M., Lee W. H., Marsilio E., Paucha E., Livingston D. M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988 Jul 15;54(2):275–283. doi: 10.1016/0092-8674(88)90559-4. [DOI] [PubMed] [Google Scholar]
  59. Dean N. M., Mordan L. J., Tse K., Mooberry S. L., Boynton A. L. Okadaic acid inhibits PDGF-induced proliferation and decreases PDGF receptor number in C3H/10T1/2 mouse fibroblasts. Carcinogenesis. 1991 Apr;12(4):665–670. doi: 10.1093/carcin/12.4.665. [DOI] [PubMed] [Google Scholar]
  60. Deng X., Ito T., Carr B., Mumby M., May W. S., Jr Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A. J Biol Chem. 1998 Dec 18;273(51):34157–34163. doi: 10.1074/jbc.273.51.34157. [DOI] [PubMed] [Google Scholar]
  61. Depaoli-Roach A. A., Park I. K., Cerovsky V., Csortos C., Durbin S. D., Kuntz M. J., Sitikov A., Tang P. M., Verin A., Zolnierowicz S. Serine/threonine protein phosphatases in the control of cell function. Adv Enzyme Regul. 1994;34:199–224. doi: 10.1016/0065-2571(94)90017-5. [DOI] [PubMed] [Google Scholar]
  62. Di Como C. J., Arndt K. T. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 1996 Aug 1;10(15):1904–1916. doi: 10.1101/gad.10.15.1904. [DOI] [PubMed] [Google Scholar]
  63. DiDonato J. A., Hayakawa M., Rothwarf D. M., Zandi E., Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997 Aug 7;388(6642):548–554. doi: 10.1038/41493. [DOI] [PubMed] [Google Scholar]
  64. Dobrowsky R. T., Hannun Y. A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem. 1992 Mar 15;267(8):5048–5051. [PubMed] [Google Scholar]
  65. Dobrowsky R. T., Kamibayashi C., Mumby M. C., Hannun Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993 Jul 25;268(21):15523–15530. [PubMed] [Google Scholar]
  66. Drewes G., Mandelkow E. M., Baumann K., Goris J., Merlevede W., Mandelkow E. Dephosphorylation of tau protein and Alzheimer paired helical filaments by calcineurin and phosphatase-2A. FEBS Lett. 1993 Dec 28;336(3):425–432. doi: 10.1016/0014-5793(93)80850-t. [DOI] [PubMed] [Google Scholar]
  67. Dunphy W. G. The decision to enter mitosis. Trends Cell Biol. 1994 Jun;4(6):202–207. doi: 10.1016/0962-8924(94)90142-2. [DOI] [PubMed] [Google Scholar]
  68. Evangelista C. C., Jr, Rodriguez Torres A. M., Limbach M. P., Zitomer R. S. Rox3 and Rts1 function in the global stress response pathway in baker's yeast. Genetics. 1996 Apr;142(4):1083–1093. doi: 10.1093/genetics/142.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Evans D. R., Hemmings B. A. Important role for phylogenetically invariant PP2Acalpha active site and C-terminal residues revealed by mutational analysis in Saccharomyces cerevisiae. Genetics. 2000 Sep;156(1):21–29. doi: 10.1093/genetics/156.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Evans D. R., Myles T., Hofsteenge J., Hemmings B. A. Functional expression of human PP2Ac in yeast permits the identification of novel C-terminal and dominant-negative mutant forms. J Biol Chem. 1999 Aug 20;274(34):24038–24046. doi: 10.1074/jbc.274.34.24038. [DOI] [PubMed] [Google Scholar]
  71. Evans D. R., Stark M. J. Mutations in the Saccharomyces cerevisiae type 2A protein phosphatase catalytic subunit reveal roles in cell wall integrity, actin cytoskeleton organization and mitosis. Genetics. 1997 Feb;145(2):227–241. doi: 10.1093/genetics/145.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Fanning E., Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem. 1992;61:55–85. doi: 10.1146/annurev.bi.61.070192.000415. [DOI] [PubMed] [Google Scholar]
  73. Favre B., Turowski P., Hemmings B. A. Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem. 1997 May 23;272(21):13856–13863. doi: 10.1074/jbc.272.21.13856. [DOI] [PubMed] [Google Scholar]
  74. Favre B., Zolnierowicz S., Turowski P., Hemmings B. A. The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. J Biol Chem. 1994 Jun 10;269(23):16311–16317. [PubMed] [Google Scholar]
  75. Ferrigno P., Langan T. A., Cohen P. Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases. Mol Biol Cell. 1993 Jul;4(7):669–677. doi: 10.1091/mbc.4.7.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Floer M., Stock J. Carboxyl methylation of protein phosphatase 2A from Xenopus eggs is stimulated by cAMP and inhibited by okadaic acid. Biochem Biophys Res Commun. 1994 Jan 14;198(1):372–379. doi: 10.1006/bbrc.1994.1052. [DOI] [PubMed] [Google Scholar]
  77. Francia G., Poulsom R., Hanby A. M., Mitchell S. D., Williams G., Mckee P., Hart I. R. Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. Int J Cancer. 1999 Aug 27;82(5):709–713. doi: 10.1002/(sici)1097-0215(19990827)82:5<709::aid-ijc14>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  78. Frolova L., Le Goff X., Rasmussen H. H., Cheperegin S., Drugeon G., Kress M., Arman I., Haenni A. L., Celis J. E., Philippe M. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 1994 Dec 15;372(6507):701–703. doi: 10.1038/372701a0. [DOI] [PubMed] [Google Scholar]
  79. Frost J. A., Alberts A. S., Sontag E., Guan K., Mumby M. C., Feramisco J. R. Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate AP-1 activity. Mol Cell Biol. 1994 Sep;14(9):6244–6252. doi: 10.1128/mcb.14.9.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Fuhrer D. K., Yang Y. C. Complex formation of JAK2 with PP2A, P13K, and Yes in response to the hematopoietic cytokine interleukin-11. Biochem Biophys Res Commun. 1996 Jul 16;224(2):289–296. doi: 10.1006/bbrc.1996.1023. [DOI] [PubMed] [Google Scholar]
  81. Fujiki H., Suganuma M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res. 1993;61:143–194. doi: 10.1016/s0065-230x(08)60958-6. [DOI] [PubMed] [Google Scholar]
  82. Félix M. A., Cohen P., Karsenti E. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid. EMBO J. 1990 Mar;9(3):675–683. doi: 10.1002/j.1460-2075.1990.tb08159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Galadari S., Kishikawa K., Kamibayashi C., Mumby M. C., Hannun Y. A. Purification and characterization of ceramide-activated protein phosphatases. Biochemistry. 1998 Aug 11;37(32):11232–11238. doi: 10.1021/bi980911+. [DOI] [PubMed] [Google Scholar]
  84. Garcia A., Cereghini S., Sontag E. Protein phosphatase 2A and phosphatidylinositol 3-kinase regulate the activity of Sp1-responsive promoters. J Biol Chem. 2000 Mar 31;275(13):9385–9389. doi: 10.1074/jbc.275.13.9385. [DOI] [PubMed] [Google Scholar]
  85. Gause K. C., Homma M. K., Licciardi K. A., Seger R., Ahn N. G., Peterson M. J., Krebs E. G., Meier K. E. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells. J Biol Chem. 1993 Aug 5;268(22):16124–16129. [PubMed] [Google Scholar]
  86. Glenn G. M., Eckhart W. Mutation of a cysteine residue in polyomavirus middle T antigen abolishes interactions with protein phosphatase 2A, pp60c-src, and phosphatidylinositol-3 kinase, activation of c-fos expression, and cellular transformation. J Virol. 1993 Apr;67(4):1945–1952. doi: 10.1128/jvi.67.4.1945-1952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Glover H. R., Brewster C. E., Dilworth S. M. Association between src-kinases and the polyoma virus oncogene middle T-antigen requires PP2A and a specific sequence motif. Oncogene. 1999 Jul 29;18(30):4364–4370. doi: 10.1038/sj.onc.1202816. [DOI] [PubMed] [Google Scholar]
  88. Goedert M., Cohen E. S., Jakes R., Cohen P. p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer's disease [corrected]. FEBS Lett. 1992 Nov 2;312(1):95–99. doi: 10.1016/0014-5793(92)81418-l. [DOI] [PubMed] [Google Scholar]
  89. Gong C. X., Lidsky T., Wegiel J., Zuck L., Grundke-Iqbal I., Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem. 2000 Feb 25;275(8):5535–5544. doi: 10.1074/jbc.275.8.5535. [DOI] [PubMed] [Google Scholar]
  90. Goris J., Hermann J., Hendrix P., Ozon R., Merlevede W. Okadaic acid, a specific protein phosphatase inhibitor, induces maturation and MPF formation in Xenopus laevis oocytes. FEBS Lett. 1989 Mar 13;245(1-2):91–94. doi: 10.1016/0014-5793(89)80198-x. [DOI] [PubMed] [Google Scholar]
  91. Goris J., Pallen C. J., Parker P. J., Hermann J., Waterfield M. D., Merlevede W. Conversion of a phosphoseryl/threonyl phosphatase into a phosphotyrosyl phosphatase. Biochem J. 1988 Dec 15;256(3):1029–1034. doi: 10.1042/bj2561029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Gould K. L., Moreno S., Owen D. J., Sazer S., Nurse P. Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 1991 Nov;10(11):3297–3309. doi: 10.1002/j.1460-2075.1991.tb04894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Green D. D., Yang S. I., Mumby M. C. Molecular cloning and sequence analysis of the catalytic subunit of bovine type 2A protein phosphatase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4880–4884. doi: 10.1073/pnas.84.14.4880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Griswold-Prenner I., Kamibayashi C., Maruoka E. M., Mumby M. C., Derynck R. Physical and functional interactions between type I transforming growth factor beta receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A. Mol Cell Biol. 1998 Nov;18(11):6595–6604. doi: 10.1128/mcb.18.11.6595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Groves M. R., Hanlon N., Turowski P., Hemmings B. A., Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell. 1999 Jan 8;96(1):99–110. doi: 10.1016/s0092-8674(00)80963-0. [DOI] [PubMed] [Google Scholar]
  96. Guo H., Damuni Z. Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2500–2504. doi: 10.1073/pnas.90.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Gupta R. W., Joseph C. K., Foster D. A. v-Src-induced transformation is inhibited by okadaic acid. Biochem Biophys Res Commun. 1993 Oct 15;196(1):320–327. doi: 10.1006/bbrc.1993.2251. [DOI] [PubMed] [Google Scholar]
  98. Guy G. R., Philp R., Tan Y. H. Activation of protein kinases and the inactivation of protein phosphatase 2A in tumour necrosis factor and interleukin-1 signal-transduction pathways. Eur J Biochem. 1995 Apr 15;229(2):503–511. [PubMed] [Google Scholar]
  99. Gómez N., Cohen P. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature. 1991 Sep 12;353(6340):170–173. doi: 10.1038/353170a0. [DOI] [PubMed] [Google Scholar]
  100. Götz J., Probst A., Ehler E., Hemmings B., Kues W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12370–12375. doi: 10.1073/pnas.95.21.12370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Götz J., Probst A., Mistl C., Nitsch R. M., Ehler E. Distinct role of protein phosphatase 2A subunit Calpha in the regulation of E-cadherin and beta-catenin during development. Mech Dev. 2000 May;93(1-2):83–93. doi: 10.1016/s0925-4773(00)00267-7. [DOI] [PubMed] [Google Scholar]
  102. Haccard O., Jessus C., Cayla X., Goris J., Merlevede W., Ozon R. In vivo activation of a microtubule-associated protein kinase during meiotic maturation of the Xenopus oocyte. Eur J Biochem. 1990 Sep 24;192(3):633–642. doi: 10.1111/j.1432-1033.1990.tb19270.x. [DOI] [PubMed] [Google Scholar]
  103. Hansra G., Bornancin F., Whelan R., Hemmings B. A., Parker P. J. 12-O-Tetradecanoylphorbol-13-acetate-induced dephosphorylation of protein kinase Calpha correlates with the presence of a membrane-associated protein phosphatase 2A heterotrimer. J Biol Chem. 1996 Dec 20;271(51):32785–32788. doi: 10.1074/jbc.271.51.32785. [DOI] [PubMed] [Google Scholar]
  104. Hart M. J., de los Santos R., Albert I. N., Rubinfeld B., Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998 May 7;8(10):573–581. doi: 10.1016/s0960-9822(98)70226-x. [DOI] [PubMed] [Google Scholar]
  105. Hastie C. J., Cohen P. T. Purification of protein phosphatase 4 catalytic subunit: inhibition by the antitumour drug fostriecin and other tumour suppressors and promoters. FEBS Lett. 1998 Jul 24;431(3):357–361. doi: 10.1016/s0014-5793(98)00775-3. [DOI] [PubMed] [Google Scholar]
  106. Healy A. M., Zolnierowicz S., Stapleton A. E., Goebl M., DePaoli-Roach A. A., Pringle J. R. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol Cell Biol. 1991 Nov;11(11):5767–5780. doi: 10.1128/mcb.11.11.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Hemmings B. A., Adams-Pearson C., Maurer F., Müller P., Goris J., Merlevede W., Hofsteenge J., Stone S. R. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry. 1990 Apr 3;29(13):3166–3173. doi: 10.1021/bi00465a002. [DOI] [PubMed] [Google Scholar]
  108. Hendrix P., Mayer-Jackel R. E., Cron P., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem. 1993 Jul 15;268(20):15267–15276. [PubMed] [Google Scholar]
  109. Hendrix P., Turowski P., Mayer-Jaekel R. E., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Analysis of subunit isoforms in protein phosphatase 2A holoenzymes from rabbit and Xenopus. J Biol Chem. 1993 Apr 5;268(10):7330–7337. [PubMed] [Google Scholar]
  110. Hermann J., Cayla X., Dumortier K., Goris J., Ozon R., Merlevede W. Modulation of the substrate specificity of the polycation-stimulated protein phosphatase from Xenopus laevis oocytes. Eur J Biochem. 1988 Apr 5;173(1):17–25. doi: 10.1111/j.1432-1033.1988.tb13961.x. [DOI] [PubMed] [Google Scholar]
  111. Holmes S. E., O'Hearn E. E., McInnis M. G., Gorelick-Feldman D. A., Kleiderlein J. J., Callahan C., Kwak N. G., Ingersoll-Ashworth R. G., Sherr M., Sumner A. J. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet. 1999 Dec;23(4):391–392. doi: 10.1038/70493. [DOI] [PubMed] [Google Scholar]
  112. Hong Y., Lubert E. J., Rodgers D. W., Sarge K. D. Molecular basis of competition between HSF2 and catalytic subunit for binding to the PR65/A subunit of PP2A. Biochem Biophys Res Commun. 2000 May 27;272(1):84–89. doi: 10.1006/bbrc.2000.2733. [DOI] [PubMed] [Google Scholar]
  113. Hong Y., Sarge K. D. Regulation of protein phosphatase 2A activity by heat shock transcription factor 2. J Biol Chem. 1999 May 7;274(19):12967–12970. doi: 10.1074/jbc.274.19.12967. [DOI] [PubMed] [Google Scholar]
  114. Honkanen R. E., Dukelow M., Zwiller J., Moore R. E., Khatra B. S., Boynton A. L. Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Mol Pharmacol. 1991 Oct;40(4):577–583. [PubMed] [Google Scholar]
  115. Honkanen R. E., Zwiller J., Moore R. E., Daily S. L., Khatra B. S., Dukelow M., Boynton A. L. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem. 1990 Nov 15;265(32):19401–19404. [PubMed] [Google Scholar]
  116. Hrimech M., Yao X. J., Branton P. E., Cohen E. A. Human immunodeficiency virus type 1 Vpr-mediated G(2) cell cycle arrest: Vpr interferes with cell cycle signaling cascades by interacting with the B subunit of serine/threonine protein phosphatase 2A. EMBO J. 2000 Aug 1;19(15):3956–3967. doi: 10.1093/emboj/19.15.3956. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  117. Hsu W., Zeng L., Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem. 1999 Feb 5;274(6):3439–3445. doi: 10.1074/jbc.274.6.3439. [DOI] [PubMed] [Google Scholar]
  118. Huang X., Honkanen R. E. Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). J Biol Chem. 1998 Jan 16;273(3):1462–1468. doi: 10.1074/jbc.273.3.1462. [DOI] [PubMed] [Google Scholar]
  119. Hériché J. K., Lebrin F., Rabilloud T., Leroy D., Chambaz E. M., Goldberg Y. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 1997 May 9;276(5314):952–955. doi: 10.1126/science.276.5314.952. [DOI] [PubMed] [Google Scholar]
  120. Ikeda S., Kishida M., Matsuura Y., Usui H., Kikuchi A. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene. 2000 Jan 27;19(4):537–545. doi: 10.1038/sj.onc.1203359. [DOI] [PubMed] [Google Scholar]
  121. Ikeda S., Kishida S., Yamamoto H., Murai H., Koyama S., Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998 Mar 2;17(5):1371–1384. doi: 10.1093/emboj/17.5.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Imaoka T., Imazu M., Usui H., Kinohara N., Takeda M. Resolution and reassociation of three distinct components from pig heart phosphoprotein phosphatase. J Biol Chem. 1983 Feb 10;258(3):1526–1535. [PubMed] [Google Scholar]
  123. Inoue R., Usui H., Tanabe O., Nishito Y., Shimizu M., Takeda M. Studies on functions of the 63-kDa A- and 74-kDa B'(delta)-regulatory subunits in human erythrocyte protein phosphatase 2A: dissociation and reassociation of the subunits. J Biochem. 1999 Dec;126(6):1127–1135. doi: 10.1093/oxfordjournals.jbchem.a022558. [DOI] [PubMed] [Google Scholar]
  124. Inui S., Kuwahara K., Mizutani J., Maeda K., Kawai T., Nakayasu H., Sakaguchi N. Molecular cloning of a cDNA clone encoding a phosphoprotein component related to the Ig receptor-mediated signal transduction. J Immunol. 1995 Mar 15;154(6):2714–2723. [PubMed] [Google Scholar]
  125. Inui S., Sanjo H., Maeda K., Yamamoto H., Miyamoto E., Sakaguchi N. Ig receptor binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood. 1998 Jul 15;92(2):539–546. [PubMed] [Google Scholar]
  126. Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
  127. Ito A., Kataoka T. R., Watanabe M., Nishiyama K., Mazaki Y., Sabe H., Kitamura Y., Nojima H. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J. 2000 Feb 15;19(4):562–571. doi: 10.1093/emboj/19.4.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Janssens V., Van Hoof C., De Baere I., Merlevede W., Goris J. Functional analysis of the promoter region of the human phosphotyrosine phosphatase activator gene: Yin Yang 1 is essential for core promoter activity. Biochem J. 1999 Dec 15;344(Pt 3):755–763. [PMC free article] [PubMed] [Google Scholar]
  129. Janssens V., Van Hoof C., De Baere I., Merlevede W., Goris J. The phosphotyrosyl phosphatase activator gene is a novel p53 target gene. J Biol Chem. 2000 Jul 7;275(27):20488–20495. doi: 10.1074/jbc.M909370199. [DOI] [PubMed] [Google Scholar]
  130. Janssens V., Van Hoof C., Merlevede W., Goris J. PTPA regulating PP2A as a dual specificity phosphatase. Methods Mol Biol. 1998;93:103–115. doi: 10.1385/0-89603-468-2:103. [DOI] [PubMed] [Google Scholar]
  131. Janssens V., van Hoof C., Martens E., de Baere I., Merlevede W., Goris J. Identification and characterization of alternative splice products encoded by the human phosphotyrosyl phosphatase activator gene. Eur J Biochem. 2000 Jul;267(14):4406–4413. doi: 10.1046/j.1432-1327.2000.01486.x. [DOI] [PubMed] [Google Scholar]
  132. Jessus C., Goris J., Cayla X., Hermann J., Hendrix P., Ozon R., Merlevede W. Tubulin and MAP2 regulate the PCSL phosphatase activity. A possible new role for microtubular proteins. Eur J Biochem. 1989 Mar 1;180(1):15–22. doi: 10.1111/j.1432-1033.1989.tb14609.x. [DOI] [PubMed] [Google Scholar]
  133. Jiang W., Hallberg R. L. Isolation and characterization of par1(+) and par2(+): two Schizosaccharomyces pombe genes encoding B' subunits of protein phosphatase 2A. Genetics. 2000 Mar;154(3):1025–1038. doi: 10.1093/genetics/154.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Jiang Y., Broach J. R. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 1999 May 17;18(10):2782–2792. doi: 10.1093/emboj/18.10.2782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Jones T. A., Barker H. M., da Cruz e Silva E. F., Mayer-Jaekel R. E., Hemmings B. A., Spurr N. K., Sheer D., Cohen P. T. Localization of the genes encoding the catalytic subunits of protein phosphatase 2A to human chromosome bands 5q23-->q31 and 8p12-->p11.2, respectively. Cytogenet Cell Genet. 1993;63(1):35–41. doi: 10.1159/000133497. [DOI] [PubMed] [Google Scholar]
  136. Kamibayashi C., Estes R., Lickteig R. L., Yang S. I., Craft C., Mumby M. C. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J Biol Chem. 1994 Aug 5;269(31):20139–20148. [PubMed] [Google Scholar]
  137. Kamibayashi C., Lickteig R. L., Estes R., Walter G., Mumby M. C. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. J Biol Chem. 1992 Oct 25;267(30):21864–21872. [PubMed] [Google Scholar]
  138. Karaïskou A., Cayla X., Haccard O., Jessus C., Ozon R. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Exp Cell Res. 1998 Nov 1;244(2):491–500. doi: 10.1006/excr.1998.4220. [DOI] [PubMed] [Google Scholar]
  139. Karaïskou A., Jessus C., Brassac T., Ozon R. Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J Cell Sci. 1999 Nov;112(Pt 21):3747–3756. doi: 10.1242/jcs.112.21.3747. [DOI] [PubMed] [Google Scholar]
  140. Katayose Y., Li M., Al-Murrani S. W., Shenolikar S., Damuni Z. Protein phosphatase 2A inhibitors, I(1)(PP2A) and I(2)(PP2A), associate with and modify the substrate specificity of protein phosphatase 1. J Biol Chem. 2000 Mar 31;275(13):9209–9214. doi: 10.1074/jbc.275.13.9209. [DOI] [PubMed] [Google Scholar]
  141. Katoh F., Fitzgerald D. J., Giroldi L., Fujiki H., Sugimura T., Yamasaki H. Okadaic acid and phorbol esters: comparative effects of these tumor promoters on cell transformation, intercellular communication and differentiation in vitro. Jpn J Cancer Res. 1990 Jun-Jul;81(6-7):590–597. doi: 10.1111/j.1349-7006.1990.tb02614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Kawabe T., Muslin A. J., Korsmeyer S. J. HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature. 1997 Jan 30;385(6615):454–458. doi: 10.1038/385454a0. [DOI] [PubMed] [Google Scholar]
  143. Kawada M., Amemiya M., Ishizuka M., Takeuchi T. Cytostatin, an inhibitor of cell adhesion to extracellular matrix, selectively inhibits protein phosphatase 2A. Biochim Biophys Acta. 1999 Nov 11;1452(2):209–217. doi: 10.1016/s0167-4889(99)00126-3. [DOI] [PubMed] [Google Scholar]
  144. Khew-Goodall Y., Hemmings B. A. Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett. 1988 Oct 10;238(2):265–268. doi: 10.1016/0014-5793(88)80493-9. [DOI] [PubMed] [Google Scholar]
  145. Khew-Goodall Y., Mayer R. E., Maurer F., Stone S. R., Hemmings B. A. Structure and transcriptional regulation of protein phosphatase 2A catalytic subunit genes. Biochemistry. 1991 Jan 8;30(1):89–97. doi: 10.1021/bi00215a014. [DOI] [PubMed] [Google Scholar]
  146. Kiguchi K., Giometti C., Chubb C. H., Fujiki H., Huberman E. Differentiation induction in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1261–1267. doi: 10.1016/0006-291x(92)90209-4. [DOI] [PubMed] [Google Scholar]
  147. Kikuchi A. Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun. 2000 Feb 16;268(2):243–248. doi: 10.1006/bbrc.1999.1860. [DOI] [PubMed] [Google Scholar]
  148. Kinoshita K., Nemoto T., Nabeshima K., Kondoh H., Niwa H., Yanagida M. The regulatory subunits of fission yeast protein phosphatase 2A (PP2A) affect cell morphogenesis, cell wall synthesis and cytokinesis. Genes Cells. 1996 Jan;1(1):29–45. doi: 10.1046/j.1365-2443.1996.02002.x. [DOI] [PubMed] [Google Scholar]
  149. Kinoshita N., Ohkura H., Yanagida M. Distinct, essential roles of type 1 and 2A protein phosphatases in the control of the fission yeast cell division cycle. Cell. 1990 Oct 19;63(2):405–415. doi: 10.1016/0092-8674(90)90173-c. [DOI] [PubMed] [Google Scholar]
  150. Kinoshita N., Yamano H., Niwa H., Yoshida T., Yanagida M. Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. Genes Dev. 1993 Jun;7(6):1059–1071. doi: 10.1101/gad.7.6.1059. [DOI] [PubMed] [Google Scholar]
  151. Kleinberger T., Shenk T. Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol. 1993 Dec;67(12):7556–7560. doi: 10.1128/jvi.67.12.7556-7560.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Kohno K., Uchida T. Highly frequent single amino acid substitution in mammalian elongation factor 2 (EF-2) results in expression of resistance to EF-2-ADP-ribosylating toxins. J Biol Chem. 1987 Sep 5;262(25):12298–12305. [PubMed] [Google Scholar]
  153. Kornbluth S., Sudol M., Hanafusa H. Association of the polyomavirus middle-T antigen with c-yes protein. Nature. 1987 Jan 8;325(7000):171–173. doi: 10.1038/325171a0. [DOI] [PubMed] [Google Scholar]
  154. Kowluru A., Seavey S. E., Rabaglia M. E., Nesher R., Metz S. A. Carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting cells: evidence for functional consequences on enzyme activity and insulin secretion. Endocrinology. 1996 Jun;137(6):2315–2323. doi: 10.1210/endo.137.6.8641181. [DOI] [PubMed] [Google Scholar]
  155. Kremmer E., Ohst K., Kiefer J., Brewis N., Walter G. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol. 1997 Mar;17(3):1692–1701. doi: 10.1128/mcb.17.3.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Kumar M., Spandau D. F. The effect of phosphorylation on the antigenic reactivity of p53 in cultured human keratinocytes. Biochem Biophys Res Commun. 1995 Sep 14;214(2):744–753. doi: 10.1006/bbrc.1995.2348. [DOI] [PubMed] [Google Scholar]
  157. Kuwahara K., Matsuo T., Nomura J., Igarashi H., Kimoto M., Inui S., Sakaguchi N. Identification of a 52-kDa molecule (p52) coprecipitated with the Ig receptor-related MB-1 protein that is inducibly phosphorylated by the stimulation with phorbol myristate acetate. J Immunol. 1994 Mar 15;152(6):2742–2752. [PubMed] [Google Scholar]
  158. Law B., Rossie S. The dimeric and catalytic subunit forms of protein phosphatase 2A from rat brain are stimulated by C2-ceramide. J Biol Chem. 1995 May 26;270(21):12808–12813. doi: 10.1074/jbc.270.21.12808. [DOI] [PubMed] [Google Scholar]
  159. Lawson R., Cohen P., Lane D. P. Simian virus 40 large T-antigen-dependent DNA replication is activated by protein phosphatase 2A in vitro. J Virol. 1990 May;64(5):2380–2383. doi: 10.1128/jvi.64.5.2380-2383.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Lebrin F., Bianchini L., Rabilloud T., Chambaz E. M., Goldberg Y. CK2alpha-protein phosphatase 2A molecular complex: possible interaction with the MAP kinase pathway. Mol Cell Biochem. 1999 Jan;191(1-2):207–212. [PubMed] [Google Scholar]
  161. Lee J., Chen Y., Tolstykh T., Stock J. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6043–6047. doi: 10.1073/pnas.93.12.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Lee J., Stock J. Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem. 1993 Sep 15;268(26):19192–19195. [PubMed] [Google Scholar]
  163. Lee T. H., Solomon M. J., Mumby M. C., Kirschner M. W. INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cell. 1991 Jan 25;64(2):415–423. doi: 10.1016/0092-8674(91)90649-j. [DOI] [PubMed] [Google Scholar]
  164. Lee T. H., Turck C., Kirschner M. W. Inhibition of cdc2 activation by INH/PP2A. Mol Biol Cell. 1994 Mar;5(3):323–338. doi: 10.1091/mbc.5.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Lee V. M. Disruption of the cytoskeleton in Alzheimer's disease. Curr Opin Neurobiol. 1995 Oct;5(5):663–668. doi: 10.1016/0959-4388(95)80073-5. [DOI] [PubMed] [Google Scholar]
  166. Li H., Zhao L. L., Funder J. W., Liu J. P. Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem. 1997 Jul 4;272(27):16729–16732. doi: 10.1074/jbc.272.27.16729. [DOI] [PubMed] [Google Scholar]
  167. Li M., Damuni Z. Okadaic acid and microcystin-LR directly inhibit the methylation of protein phosphatase 2A by its specific methyltransferase. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1023–1030. doi: 10.1006/bbrc.1994.2031. [DOI] [PubMed] [Google Scholar]
  168. Li M., Guo H., Damuni Z. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry. 1995 Feb 14;34(6):1988–1996. doi: 10.1021/bi00006a020. [DOI] [PubMed] [Google Scholar]
  169. Li M., Makkinje A., Damuni Z. Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochemistry. 1996 Jun 4;35(22):6998–7002. doi: 10.1021/bi960581y. [DOI] [PubMed] [Google Scholar]
  170. Li M., Makkinje A., Damuni Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem. 1996 May 10;271(19):11059–11062. doi: 10.1074/jbc.271.19.11059. [DOI] [PubMed] [Google Scholar]
  171. Li Y. M., Casida J. E. Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11867–11870. doi: 10.1073/pnas.89.24.11867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Liauw S., Steinberg R. A. Dephosphorylation of catalytic subunit of cAMP-dependent protein kinase at Thr-197 by a cellular protein phosphatase and by purified protein phosphatase-2A. J Biol Chem. 1996 Jan 5;271(1):258–263. doi: 10.1074/jbc.271.1.258. [DOI] [PubMed] [Google Scholar]
  173. Lin F. C., Arndt K. T. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis. EMBO J. 1995 Jun 15;14(12):2745–2759. doi: 10.1002/j.1460-2075.1995.tb07275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Lin J. Y., Simmons D. T. The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J Virol. 1991 Dec;65(12):6447–6453. doi: 10.1128/jvi.65.12.6447-6453.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Lin X. H., Walter J., Scheidtmann K., Ohst K., Newport J., Walter G. Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14693–14698. doi: 10.1073/pnas.95.25.14693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Lizotte D. L., McManus D. D., Cohen H. R., DeLong A. Functional expression of human and Arabidopsis protein phosphatase 2A in Saccharomyces cerevisiae and isolation of dominant-defective mutants. Gene. 1999 Jun 24;234(1):35–44. doi: 10.1016/s0378-1119(99)00188-2. [DOI] [PubMed] [Google Scholar]
  177. Lowe M., Gonatas N. K., Warren G. The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J Cell Biol. 2000 Apr 17;149(2):341–356. doi: 10.1083/jcb.149.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Ludlow J. W., Glendening C. L., Livingston D. M., DeCarprio J. A. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol. 1993 Jan;13(1):367–372. doi: 10.1128/mcb.13.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. MacKintosh C., Klumpp S. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett. 1990 Dec 17;277(1-2):137–140. doi: 10.1016/0014-5793(90)80828-7. [DOI] [PubMed] [Google Scholar]
  180. MacKintosh R. W., Haycox G., Hardie D. G., Cohen P. T. Identification by molecular cloning of two cDNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatases-1 and -2A. FEBS Lett. 1990 Dec 10;276(1-2):156–160. doi: 10.1016/0014-5793(90)80531-m. [DOI] [PubMed] [Google Scholar]
  181. Maeda K., Inui S., Tanaka H., Sakaguchi N. A new member of the alpha4-related molecule (alpha4-b) that binds to the protein phosphatase 2A is expressed selectively in the brain and testis. Eur J Biochem. 1999 Sep;264(3):702–706. doi: 10.1046/j.1432-1327.1999.00571.x. [DOI] [PubMed] [Google Scholar]
  182. Mandelkow E. M., Biernat J., Drewes G., Gustke N., Trinczek B., Mandelkow E. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging. 1995 May-Jun;16(3):355–363. doi: 10.1016/0197-4580(95)00025-a. [DOI] [PubMed] [Google Scholar]
  183. Marcellus R. C., Chan H., Paquette D., Thirlwell S., Boivin D., Branton P. E. Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J Virol. 2000 Sep;74(17):7869–7877. doi: 10.1128/jvi.74.17.7869-7877.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Marx S. O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., Marks A. R. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000 May 12;101(4):365–376. doi: 10.1016/s0092-8674(00)80847-8. [DOI] [PubMed] [Google Scholar]
  185. Mateer S. C., Fedorov S. A., Mumby M. C. Identification of structural elements involved in the interaction of simian virus 40 small tumor antigen with protein phosphatase 2A. J Biol Chem. 1998 Dec 25;273(52):35339–35346. doi: 10.1074/jbc.273.52.35339. [DOI] [PubMed] [Google Scholar]
  186. Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Matsuo E. S., Shin R. W., Billingsley M. L., Van deVoorde A., O'Connor M., Trojanowski J. Q., Lee V. M. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau. Neuron. 1994 Oct;13(4):989–1002. doi: 10.1016/0896-6273(94)90264-x. [DOI] [PubMed] [Google Scholar]
  188. Mawal-Dewan M., Henley J., Van de Voorde A., Trojanowski J. Q., Lee V. M. The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem. 1994 Dec 9;269(49):30981–30987. [PubMed] [Google Scholar]
  189. Mayer-Jaekel R. E., Baumgartner S., Bilbe G., Ohkura H., Glover D. M., Hemmings B. A. Molecular cloning and developmental expression of the catalytic and 65-kDa regulatory subunits of protein phosphatase 2A in Drosophila. Mol Biol Cell. 1992 Mar;3(3):287–298. doi: 10.1091/mbc.3.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Mayer-Jaekel R. E., Hemmings B. A. Protein phosphatase 2A--a 'ménage à trois'. Trends Cell Biol. 1994 Aug;4(8):287–291. doi: 10.1016/0962-8924(94)90219-4. [DOI] [PubMed] [Google Scholar]
  191. Mayer-Jaekel R. E., Ohkura H., Ferrigno P., Andjelkovic N., Shiomi K., Uemura T., Glover D. M., Hemmings B. A. Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J Cell Sci. 1994 Sep;107(Pt 9):2609–2616. doi: 10.1242/jcs.107.9.2609. [DOI] [PubMed] [Google Scholar]
  192. Mayer-Jaekel R. E., Ohkura H., Gomes R., Sunkel C. E., Baumgartner S., Hemmings B. A., Glover D. M. The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell. 1993 Feb 26;72(4):621–633. doi: 10.1016/0092-8674(93)90080-a. [DOI] [PubMed] [Google Scholar]
  193. Mayer R. E., Hendrix P., Cron P., Matthies R., Stone S. R., Goris J., Merlevede W., Hofsteenge J., Hemmings B. A. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry. 1991 Apr 16;30(15):3589–3597. doi: 10.1021/bi00229a001. [DOI] [PubMed] [Google Scholar]
  194. McCright B., Brothman A. R., Virshup D. M. Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 --> p12. Genomics. 1996 Aug 15;36(1):168–170. doi: 10.1006/geno.1996.0438. [DOI] [PubMed] [Google Scholar]
  195. McCright B., Rivers A. M., Audlin S., Virshup D. M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem. 1996 Sep 6;271(36):22081–22089. doi: 10.1074/jbc.271.36.22081. [DOI] [PubMed] [Google Scholar]
  196. McCright B., Virshup D. M. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem. 1995 Nov 3;270(44):26123–26128. doi: 10.1074/jbc.270.44.26123. [DOI] [PubMed] [Google Scholar]
  197. Meier R., Thelen M., Hemmings B. A. Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J. 1998 Dec 15;17(24):7294–7303. doi: 10.1093/emboj/17.24.7294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Merrick S. E., Trojanowski J. Q., Lee V. M. Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. J Neurosci. 1997 Aug 1;17(15):5726–5737. doi: 10.1523/JNEUROSCI.17-15-05726.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Millward T. A., Zolnierowicz S., Hemmings B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999 May;24(5):186–191. doi: 10.1016/s0968-0004(99)01375-4. [DOI] [PubMed] [Google Scholar]
  200. Minshull J., Straight A., Rudner A. D., Dernburg A. F., Belmont A., Murray A. W. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr Biol. 1996 Dec 1;6(12):1609–1620. doi: 10.1016/s0960-9822(02)70784-7. [DOI] [PubMed] [Google Scholar]
  201. Mordan L. J., Dean N. M., Honkanen R. E., Boynton A. L. Okadaic acid: a reversible inhibitor of neoplastic transformation of mouse fibroblasts. Cancer Commun. 1990;2(7):237–241. doi: 10.3727/095535490820874290. [DOI] [PubMed] [Google Scholar]
  202. Moreno C. S., Park S., Nelson K., Ashby D., Hubalek F., Lane W. S., Pallas D. C. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem. 2000 Feb 25;275(8):5257–5263. doi: 10.1074/jbc.275.8.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Mullane K. P., Ratnofsky M., Culleré X., Schaffhausen B. Signaling from polyomavirus middle T and small T defines different roles for protein phosphatase 2A. Mol Cell Biol. 1998 Dec;18(12):7556–7564. doi: 10.1128/mcb.18.12.7556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Mumby M. C., Russell K. L., Garrard L. J., Green D. D. Cardiac contractile protein phosphatases. Purification of two enzyme forms and their characterization with subunit-specific antibodies. J Biol Chem. 1987 May 5;262(13):6257–6265. [PubMed] [Google Scholar]
  205. Murata K., Wu J., Brautigan D. L. B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10624–10629. doi: 10.1073/pnas.94.20.10624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Nagao M., Shima H., Nakayasu M., Sugimura T. Protein serine/threonine phosphatases as binding proteins for okadaic acid. Mutat Res. 1995 Dec;333(1-2):173–179. doi: 10.1016/0027-5107(95)00143-3. [DOI] [PubMed] [Google Scholar]
  207. Nagase T., Murakami T., Nozaki H., Inoue R., Nishito Y., Tanabe O., Usui H., Takeda M. Tissue and subcellular distributions, and characterization of rat brain protein phosphatase 2A containing a 72-kDa delta/B" subunit. J Biochem. 1997 Jul;122(1):178–187. doi: 10.1093/oxfordjournals.jbchem.a021726. [DOI] [PubMed] [Google Scholar]
  208. Nanahoshi M., Nishiuma T., Tsujishita Y., Hara K., Inui S., Sakaguchi N., Yonezawa K. Regulation of protein phosphatase 2A catalytic activity by alpha4 protein and its yeast homolog Tap42. Biochem Biophys Res Commun. 1998 Oct 20;251(2):520–526. doi: 10.1006/bbrc.1998.9493. [DOI] [PubMed] [Google Scholar]
  209. Nanahoshi M., Tsujishita Y., Tokunaga C., Inui S., Sakaguchi N., Hara K., Yonezawa K. Alpha4 protein as a common regulator of type 2A-related serine/threonine protein phosphatases. FEBS Lett. 1999 Mar 5;446(1):108–112. doi: 10.1016/s0014-5793(99)00189-1. [DOI] [PubMed] [Google Scholar]
  210. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  211. Nelson D. A., Ludlow J. W. Characterization of the mitotic phase pRb-directed protein phosphatase activity. Oncogene. 1997 May 22;14(20):2407–2415. doi: 10.1038/sj.onc.1201081. [DOI] [PubMed] [Google Scholar]
  212. Nickels J. T., Broach J. R. A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev. 1996 Feb 15;10(4):382–394. doi: 10.1101/gad.10.4.382. [DOI] [PubMed] [Google Scholar]
  213. Nishikawa M., Omay S. B., Toyoda H., Tawara I., Shima H., Nagao M., Hemmings B. A., Mumby M. C., Deguchi K. Expression of the catalytic and regulatory subunits of protein phosphatase type 2A may be differentially modulated during retinoic acid-induced granulocytic differentiation of HL-60 cells. Cancer Res. 1994 Sep 15;54(18):4879–4884. [PubMed] [Google Scholar]
  214. Ogris E., Du X., Nelson K. C., Mak E. K., Yu X. X., Lane W. S., Pallas D. C. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem. 1999 May 14;274(20):14382–14391. doi: 10.1074/jbc.274.20.14382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Ogris E., Gibson D. M., Pallas D. C. Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene. 1997 Aug 18;15(8):911–917. doi: 10.1038/sj.onc.1201259. [DOI] [PubMed] [Google Scholar]
  216. Ogris E., Mudrak I., Mak E., Gibson D., Pallas D. C. Catalytically inactive protein phosphatase 2A can bind to polyomavirus middle tumor antigen and support complex formation with pp60(c-src). J Virol. 1999 Sep;73(9):7390–7398. doi: 10.1128/jvi.73.9.7390-7398.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Okamoto K., Beach D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 1994 Oct 17;13(20):4816–4822. doi: 10.1002/j.1460-2075.1994.tb06807.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Okamoto K., Kamibayashi C., Serrano M., Prives C., Mumby M. C., Beach D. p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Mol Cell Biol. 1996 Nov;16(11):6593–6602. doi: 10.1128/mcb.16.11.6593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Okamoto K., Prives C. A role of cyclin G in the process of apoptosis. Oncogene. 1999 Aug 12;18(32):4606–4615. doi: 10.1038/sj.onc.1202821. [DOI] [PubMed] [Google Scholar]
  220. Orgad S., Brewis N. D., Alphey L., Axton J. M., Dudai Y., Cohen P. T. The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS Lett. 1990 Nov 26;275(1-2):44–48. doi: 10.1016/0014-5793(90)81435-q. [DOI] [PubMed] [Google Scholar]
  221. Pallas D. C., Shahrik L. K., Martin B. L., Jaspers S., Miller T. B., Brautigan D. L., Roberts T. M. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990 Jan 12;60(1):167–176. doi: 10.1016/0092-8674(90)90726-u. [DOI] [PubMed] [Google Scholar]
  222. Pallas D. C., Weller W., Jaspers S., Miller T. B., Lane W. S., Roberts T. M. The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J Virol. 1992 Feb;66(2):886–893. doi: 10.1128/jvi.66.2.886-893.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):233–243. doi: 10.1016/s0005-2760(98)00145-3. [DOI] [PubMed] [Google Scholar]
  224. Peterson R. T., Desai B. N., Hardwick J. S., Schreiber S. L. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4438–4442. doi: 10.1073/pnas.96.8.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Picard A., Capony J. P., Brautigan D. L., Dorée M. Involvement of protein phosphatases 1 and 2A in the control of M phase-promoting factor activity in starfish. J Cell Biol. 1989 Dec;109(6 Pt 2):3347–3354. doi: 10.1083/jcb.109.6.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Picard A., Labbé J. C., Barakat H., Cavadore J. C., Dorée M. Okadaic acid mimics a nuclear component required for cyclin B-cdc2 kinase microinjection to drive starfish oocytes into M phase. J Cell Biol. 1991 Oct;115(2):337–344. doi: 10.1083/jcb.115.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Price N. E., Mumby M. C. Brain protein serine/threonine phosphatases. Curr Opin Neurobiol. 1999 Jun;9(3):336–342. doi: 10.1016/s0959-4388(99)80049-x. [DOI] [PubMed] [Google Scholar]
  228. Price N. E., Wadzinski B., Mumby M. C. An anchoring factor targets protein phosphatase 2A to brain microtubules. Brain Res Mol Brain Res. 1999 Nov 10;73(1-2):68–77. doi: 10.1016/s0169-328x(99)00237-5. [DOI] [PubMed] [Google Scholar]
  229. Ramachandran C., Goris J., Waelkens E., Merlevede W., Walsh D. A. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J Biol Chem. 1987 Mar 5;262(7):3210–3218. [PubMed] [Google Scholar]
  230. Ramotar D., Belanger E., Brodeur I., Masson J. Y., Drobetsky E. A. A yeast homologue of the human phosphotyrosyl phosphatase activator PTPA is implicated in protection against oxidative DNA damage induced by the model carcinogen 4-nitroquinoline 1-oxide. J Biol Chem. 1998 Aug 21;273(34):21489–21496. doi: 10.1074/jbc.273.34.21489. [DOI] [PubMed] [Google Scholar]
  231. Ratcliffe M. J., Itoh K., Sokol S. Y. A positive role for the PP2A catalytic subunit in Wnt signal transduction. J Biol Chem. 2000 Nov 17;275(46):35680–35683. doi: 10.1074/jbc.C000639200. [DOI] [PubMed] [Google Scholar]
  232. Rempola B., Kaniak A., Migdalski A., Rytka J., Slonimski P. P., di Rago J. P. Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae. Mol Gen Genet. 2000 Jan;262(6):1081–1092. doi: 10.1007/pl00008651. [DOI] [PubMed] [Google Scholar]
  233. Reyes J. G., Robayna I. G., Delgado P. S., González I. H., Aguiar J. Q., Rosas F. E., Fanjul L. F., Galarreta C. M. c-Jun is a downstream target for ceramide-activated protein phosphatase in A431 cells. J Biol Chem. 1996 Aug 30;271(35):21375–21380. doi: 10.1074/jbc.271.35.21375. [DOI] [PubMed] [Google Scholar]
  234. Ricciarelli R., Azzi A. Regulation of recombinant PKC alpha activity by protein phosphatase 1 and protein phosphatase 2A. Arch Biochem Biophys. 1998 Jul 15;355(2):197–200. doi: 10.1006/abbi.1998.0732. [DOI] [PubMed] [Google Scholar]
  235. Ronne H., Carlberg M., Hu G. Z., Nehlin J. O. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol Cell Biol. 1991 Oct;11(10):4876–4884. doi: 10.1128/mcb.11.10.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Ruediger R., Brewis N., Ohst K., Walter G. Increasing the ratio of PP2A core enzyme to holoenzyme inhibits Tat-stimulated HIV-1 transcription and virus production. Virology. 1997 Nov 24;238(2):432–443. doi: 10.1006/viro.1997.8873. [DOI] [PubMed] [Google Scholar]
  237. Ruediger R., Hentz M., Fait J., Mumby M., Walter G. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol. 1994 Jan;68(1):123–129. doi: 10.1128/jvi.68.1.123-129.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Ruediger R., Roeckel D., Fait J., Bergqvist A., Magnusson G., Walter G. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol. 1992 Nov;12(11):4872–4882. doi: 10.1128/mcb.12.11.4872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Ruediger R., Van Wart Hood J. E., Mumby M., Walter G. Constant expression and activity of protein phosphatase 2A in synchronized cells. Mol Cell Biol. 1991 Aug;11(8):4282–4285. doi: 10.1128/mcb.11.8.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Ruvolo P. P., Deng X., Ito T., Carr B. K., May W. S. Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem. 1999 Jul 16;274(29):20296–20300. doi: 10.1074/jbc.274.29.20296. [DOI] [PubMed] [Google Scholar]
  241. Saito S., Miyaji-Yamaguchi M., Shimoyama T., Nagata K. Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor. Biochem Biophys Res Commun. 1999 Jun 7;259(2):471–475. doi: 10.1006/bbrc.1999.0790. [DOI] [PubMed] [Google Scholar]
  242. Saito T., Ishiguro K., Uchida T., Miyamoto E., Kishimoto T., Hisanaga S. In situ dephosphorylation of tau by protein phosphatase 2A and 2B in fetal rat primary cultured neurons. FEBS Lett. 1995 Dec 4;376(3):238–242. doi: 10.1016/0014-5793(95)01292-0. [DOI] [PubMed] [Google Scholar]
  243. Saito T., Shima H., Osawa Y., Nagao M., Hemmings B. A., Kishimoto T., Hisanaga S. Neurofilament-associated protein phosphatase 2A: its possible role in preserving neurofilaments in filamentous states. Biochemistry. 1995 Jun 6;34(22):7376–7384. doi: 10.1021/bi00022a010. [DOI] [PubMed] [Google Scholar]
  244. Santoro M. F., Annand R. R., Robertson M. M., Peng Y. W., Brady M. J., Mankovich J. A., Hackett M. C., Ghayur T., Walter G., Wong W. W. Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J Biol Chem. 1998 May 22;273(21):13119–13128. doi: 10.1074/jbc.273.21.13119. [DOI] [PubMed] [Google Scholar]
  245. Scheidtmann K. H., Mumby M. C., Rundell K., Walter G. Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol Cell Biol. 1991 Apr;11(4):1996–2003. doi: 10.1128/mcb.11.4.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Scheidtmann K. H., Virshup D. M., Kelly T. J. Protein phosphatase 2A dephosphorylates simian virus 40 large T antigen specifically at residues involved in regulation of DNA-binding activity. J Virol. 1991 Apr;65(4):2098–2101. doi: 10.1128/jvi.65.4.2098-2101.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Seeling J. M., Miller J. R., Gil R., Moon R. T., White R., Virshup D. M. Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science. 1999 Mar 26;283(5410):2089–2091. doi: 10.1126/science.283.5410.2089. [DOI] [PubMed] [Google Scholar]
  248. Shibata S., Ishida Y., Kitano H., Ohizumi Y., Habon J., Tsukitani Y., Kikuchi H. Contractile effects of okadaic acid, a novel ionophore-like substance from black sponge, on isolated smooth muscles under the condition of Ca deficiency. J Pharmacol Exp Ther. 1982 Oct;223(1):135–143. [PubMed] [Google Scholar]
  249. Shima H., Tohda H., Aonuma S., Nakayasu M., DePaoli-Roach A. A., Sugimura T., Nagao M. Characterization of the PP2A alpha gene mutation in okadaic acid-resistant variants of CHO-K1 cells. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9267–9271. doi: 10.1073/pnas.91.20.9267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Shimizu A., Nishida J., Ueoka Y., Kato K., Hachiya T., Kuriaki Y., Wake N. CyclinG contributes to G2/M arrest of cells in response to DNA damage. Biochem Biophys Res Commun. 1998 Jan 26;242(3):529–533. doi: 10.1006/bbrc.1997.8004. [DOI] [PubMed] [Google Scholar]
  251. Shtrichman R., Sharf R., Barr H., Dobner T., Kleinberger T. Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10080–10085. doi: 10.1073/pnas.96.18.10080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Shtrichman R., Sharf R., Kleinberger T. Adenovirus E4orf4 protein interacts with both Balpha and B' subunits of protein phosphatase 2A, but E4orf4-induced apoptosis is mediated only by the interaction with Balpha. Oncogene. 2000 Aug 3;19(33):3757–3765. doi: 10.1038/sj.onc.1203705. [DOI] [PubMed] [Google Scholar]
  253. Shu Y., Hallberg R. L. SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein. Mol Cell Biol. 1995 Oct;15(10):5618–5626. doi: 10.1128/mcb.15.10.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Shu Y., Yang H., Hallberg E., Hallberg R. Molecular genetic analysis of Rts1p, a B' regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A. Mol Cell Biol. 1997 Jun;17(6):3242–3253. doi: 10.1128/mcb.17.6.3242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Sieburth D. S., Sundaram M., Howard R. M., Han M. A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev. 1999 Oct 1;13(19):2562–2569. doi: 10.1101/gad.13.19.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Silberman S. R., Speth M., Nemani R., Ganapathi M. K., Dombradi V., Paris H., Lee E. Y. Isolation and characterization of rabbit skeletal muscle protein phosphatases C-I and C-II. J Biol Chem. 1984 Mar 10;259(5):2913–2922. [PubMed] [Google Scholar]
  257. Snaith H. A., Armstrong C. G., Guo Y., Kaiser K., Cohen P. T. Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles and prevents attachment of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J Cell Sci. 1996 Dec;109(Pt 13):3001–3012. doi: 10.1242/jcs.109.13.3001. [DOI] [PubMed] [Google Scholar]
  258. Sneddon A. A., Cohen P. T., Stark M. J. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. EMBO J. 1990 Dec;9(13):4339–4346. doi: 10.1002/j.1460-2075.1990.tb07883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Sonoda Y., Kasahara T., Yamaguchi Y., Kuno K., Matsushima K., Mukaida N. Stimulation of interleukin-8 production by okadaic acid and vanadate in a human promyelocyte cell line, an HL-60 subline. Possible role of mitogen-activated protein kinase on the okadaic acid-induced NF-kappaB activation. J Biol Chem. 1997 Jun 13;272(24):15366–15372. doi: 10.1074/jbc.272.24.15366. [DOI] [PubMed] [Google Scholar]
  260. Sontag E., Fedorov S., Kamibayashi C., Robbins D., Cobb M., Mumby M. The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell. 1993 Dec 3;75(5):887–897. doi: 10.1016/0092-8674(93)90533-v. [DOI] [PubMed] [Google Scholar]
  261. Sontag E., Nunbhakdi-Craig V., Bloom G. S., Mumby M. C. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol. 1995 Mar;128(6):1131–1144. doi: 10.1083/jcb.128.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Sontag E., Nunbhakdi-Craig V., Lee G., Bloom G. S., Mumby M. C. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron. 1996 Dec;17(6):1201–1207. doi: 10.1016/s0896-6273(00)80250-0. [DOI] [PubMed] [Google Scholar]
  263. Sontag E., Nunbhakdi-Craig V., Lee G., Brandt R., Kamibayashi C., Kuret J., White C. L., 3rd, Mumby M. C., Bloom G. S. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem. 1999 Sep 3;274(36):25490–25498. doi: 10.1074/jbc.274.36.25490. [DOI] [PubMed] [Google Scholar]
  264. Sontag E., Sontag J. M., Garcia A. Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation. EMBO J. 1997 Sep 15;16(18):5662–5671. doi: 10.1093/emboj/16.18.5662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Srinivasan M., Begum N. Regulation of protein phosphatase 1 and 2A activities by insulin during myogenesis in rat skeletal muscle cells in culture. J Biol Chem. 1994 Apr 29;269(17):12514–12520. [PubMed] [Google Scholar]
  266. Stansfield I., Jones K. M., Kushnirov V. V., Dagkesamanskaya A. R., Poznyakovski A. I., Paushkin S. V., Nierras C. R., Cox B. S., Ter-Avanesyan M. D., Tuite M. F. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 1;14(17):4365–4373. doi: 10.1002/j.1460-2075.1995.tb00111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Stansfield I., Jones K. M., Tuite M. F. The end in sight: terminating translation in eukaryotes. Trends Biochem Sci. 1995 Dec;20(12):489–491. doi: 10.1016/s0968-0004(00)89113-6. [DOI] [PubMed] [Google Scholar]
  268. Stark M. J. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast. 1996 Dec;12(16):1647–1675. doi: 10.1002/(SICI)1097-0061(199612)12:16%3C1647::AID-YEA71%3E3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  269. Stone S. R., Hofsteenge J., Hemmings B. A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry. 1987 Nov 17;26(23):7215–7220. doi: 10.1021/bi00397a003. [DOI] [PubMed] [Google Scholar]
  270. Strack S., Chang D., Zaucha J. A., Colbran R. J., Wadzinski B. E. Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett. 1999 Nov 5;460(3):462–466. doi: 10.1016/s0014-5793(99)01377-0. [DOI] [PubMed] [Google Scholar]
  271. Strack S., Westphal R. S., Colbran R. J., Ebner F. F., Wadzinski B. E. Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain Res. 1997 Oct 3;49(1-2):15–28. doi: 10.1016/s0169-328x(97)00117-4. [DOI] [PubMed] [Google Scholar]
  272. Strack S., Zaucha J. A., Ebner F. F., Colbran R. J., Wadzinski B. E. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol. 1998 Mar 23;392(4):515–527. [PubMed] [Google Scholar]
  273. Suganuma M., Fujiki H., Suguri H., Yoshizawa S., Hirota M., Nakayasu M., Ojika M., Wakamatsu K., Yamada K., Sugimura T. Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1768–1771. doi: 10.1073/pnas.85.6.1768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Takahashi M., Shibata H., Shimakawa M., Miyamoto M., Mukai H., Ono Y. Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus. J Biol Chem. 1999 Jun 11;274(24):17267–17274. doi: 10.1074/jbc.274.24.17267. [DOI] [PubMed] [Google Scholar]
  275. Takai A., Mieskes G. Inhibitory effect of okadaic acid on the p-nitrophenyl phosphate phosphatase activity of protein phosphatases. Biochem J. 1991 Apr 1;275(Pt 1):233–239. doi: 10.1042/bj2750233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Takenaka I., Morin F., Seizinger B. R., Kley N. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J Biol Chem. 1995 Mar 10;270(10):5405–5411. doi: 10.1074/jbc.270.10.5405. [DOI] [PubMed] [Google Scholar]
  277. Tanabe O., Nagase T., Murakami T., Nozaki H., Usui H., Nishito Y., Hayashi H., Kagamiyama H., Takeda M. Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. FEBS Lett. 1996 Jan 22;379(1):107–111. doi: 10.1016/0014-5793(95)01500-0. [DOI] [PubMed] [Google Scholar]
  278. Tawara I., Nishikawa M., Morita K., Kobayashi K., Toyoda H., Omay S. B., Shima H., Nagao M., Kuno T., Tanaka C. Down-regulation by retinoic acid of the catalytic subunit of protein phosphatase type 2A during granulocytic differentiation of HL-60 cells. FEBS Lett. 1993 Apr 26;321(2-3):224–228. doi: 10.1016/0014-5793(93)80113-9. [DOI] [PubMed] [Google Scholar]
  279. Tehrani M. A., Mumby M. C., Kamibayashi C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem. 1996 Mar 1;271(9):5164–5170. doi: 10.1074/jbc.271.9.5164. [DOI] [PubMed] [Google Scholar]
  280. Thomas G., Hall M. N. TOR signalling and control of cell growth. Curr Opin Cell Biol. 1997 Dec;9(6):782–787. doi: 10.1016/s0955-0674(97)80078-6. [DOI] [PubMed] [Google Scholar]
  281. Tohda H., Nagao M., Sugimura T., Oikawa A. Okadaic acid, a protein phosphatase inhibitor, induces sister-chromatid exchanges depending on the presence of bromodeoxyuridine. Mutat Res. 1993 Oct;289(2):275–280. doi: 10.1016/0027-5107(93)90078-t. [DOI] [PubMed] [Google Scholar]
  282. Tournebize R., Andersen S. S., Verde F., Dorée M., Karsenti E., Hyman A. A. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J. 1997 Sep 15;16(18):5537–5549. doi: 10.1093/emboj/16.18.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Tung H. Y., De Rocquigny H., Zhao L. J., Cayla X., Roques B. P., Ozon R. Direct activation of protein phosphatase-2A0 by HIV-1 encoded protein complex NCp7:vpr. FEBS Lett. 1997 Jan 20;401(2-3):197–201. doi: 10.1016/s0014-5793(96)01470-6. [DOI] [PubMed] [Google Scholar]
  284. Turowski P., Favre B., Campbell K. S., Lamb N. J., Hemmings B. A. Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. Eur J Biochem. 1997 Aug 15;248(1):200–208. doi: 10.1111/j.1432-1033.1997.t01-1-00200.x. [DOI] [PubMed] [Google Scholar]
  285. Turowski P., Fernandez A., Favre B., Lamb N. J., Hemmings B. A. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol. 1995 Apr;129(2):397–410. doi: 10.1083/jcb.129.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Turowski P., Myles T., Hemmings B. A., Fernandez A., Lamb N. J. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell. 1999 Jun;10(6):1997–2015. doi: 10.1091/mbc.10.6.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Uemura T., Shiomi K., Togashi S., Takeichi M. Mutation of twins encoding a regulator of protein phosphatase 2A leads to pattern duplication in Drosophila imaginal discs. Genes Dev. 1993 Mar;7(3):429–440. doi: 10.1101/gad.7.3.429. [DOI] [PubMed] [Google Scholar]
  288. Ulug E. T., Cartwright A. J., Courtneidge S. A. Characterization of the interaction of polyomavirus middle T antigen with type 2A protein phosphatase. J Virol. 1992 Mar;66(3):1458–1467. doi: 10.1128/jvi.66.3.1458-1467.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Usui H., Imazu M., Maeta K., Tsukamoto H., Azuma K., Takeda M. Three distinct forms of type 2A protein phosphatase in human erythrocyte cytosol. J Biol Chem. 1988 Mar 15;263(8):3752–3761. [PubMed] [Google Scholar]
  290. Usui H., Inoue R., Tanabe O., Nishito Y., Shimizu M., Hayashi H., Kagamiyama H., Takeda M. Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B'' (delta) regulatory subunit in vitro and identification of the phosphorylation sites. FEBS Lett. 1998 Jul 3;430(3):312–316. doi: 10.1016/s0014-5793(98)00684-x. [DOI] [PubMed] [Google Scholar]
  291. Van Hoof C., Aly M. S., Garcia A., Cayla X., Cassiman J. J., Merlevede W., Goris J. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A. Genomics. 1995 Jul 20;28(2):261–272. doi: 10.1006/geno.1995.1140. [DOI] [PubMed] [Google Scholar]
  292. Van Hoof C., Cayla X., Bosch M., Merlevede W., Goris J. The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. Eur J Biochem. 1994 Dec 15;226(3):899–907. doi: 10.1111/j.1432-1033.1994.00899.x. [DOI] [PubMed] [Google Scholar]
  293. Van Hoof C., Ingels F., Cayla X., Stevens I., Merlevede W., Goris J. Molecular cloning and developmental regulation of expression of two isoforms of the catalytic subunit of protein phosphatase 2A from Xenopus laevis. Biochem Biophys Res Commun. 1995 Oct 13;215(2):666–673. doi: 10.1006/bbrc.1995.2516. [DOI] [PubMed] [Google Scholar]
  294. Van Hoof C., Janssens V., De Baere I., de Winde J. H., Winderickx J., Dumortier F., Thevelein J. M., Merlevede W., Goris J. The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle. J Mol Biol. 2000 Sep 8;302(1):103–120. doi: 10.1006/jmbi.2000.4062. [DOI] [PubMed] [Google Scholar]
  295. Van Hoof C., Janssens V., Dinishiotu A., Merlevede W., Goris J. Functional analysis of conserved domains in the phosphotyrosyl phosphatase activator. Molecular cloning of the homologues from Drosophila melanogaster and Saccharomyces cerevisiae. Biochemistry. 1998 Sep 15;37(37):12899–12908. doi: 10.1021/bi980496l. [DOI] [PubMed] [Google Scholar]
  296. Vandré D. D., Wills V. L. Inhibition of mitosis by okadaic acid: possible involvement of a protein phosphatase 2A in the transition from metaphase to anaphase. J Cell Sci. 1992 Jan;101(Pt 1):79–91. doi: 10.1242/jcs.101.1.79. [DOI] [PubMed] [Google Scholar]
  297. Virshup D. M., Kauffman M. G., Kelly T. J. Activation of SV40 DNA replication in vitro by cellular protein phosphatase 2A. EMBO J. 1989 Dec 1;8(12):3891–3898. doi: 10.1002/j.1460-2075.1989.tb08568.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Voorhoeve P. M., Hijmans E. M., Bernards R. Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene. 1999 Jan 14;18(2):515–524. doi: 10.1038/sj.onc.1202316. [DOI] [PubMed] [Google Scholar]
  299. Voorhoeve P. M., Watson R. J., Farlie P. G., Bernards R., Lam E. W. Rapid dephosphorylation of p107 following UV irradiation. Oncogene. 1999 Jan 21;18(3):679–688. doi: 10.1038/sj.onc.1202289. [DOI] [PubMed] [Google Scholar]
  300. Wadzinski B. E., Eisfelder B. J., Peruski L. F., Jr, Mumby M. C., Johnson G. L. NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. J Biol Chem. 1992 Aug 25;267(24):16883–16888. [PubMed] [Google Scholar]
  301. Waelkens E., Goris J., Merlevede W. Purification and properties of polycation-stimulated phosphorylase phosphatases from rabbit skeletal muscle. J Biol Chem. 1987 Jan 25;262(3):1049–1059. [PubMed] [Google Scholar]
  302. Walter G., Ruediger R., Slaughter C., Mumby M. Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2521–2525. doi: 10.1073/pnas.87.7.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Wang S. S., Esplin E. D., Li J. L., Huang L., Gazdar A., Minna J., Evans G. A. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 1998 Oct 9;282(5387):284–287. doi: 10.1126/science.282.5387.284. [DOI] [PubMed] [Google Scholar]
  304. Wang Y., Burke D. J. Cdc55p, the B-type regulatory subunit of protein phosphatase 2A, has multiple functions in mitosis and is required for the kinetochore/spindle checkpoint in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Feb;17(2):620–626. doi: 10.1128/mcb.17.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Wassarman D. A., Solomon N. M., Chang H. C., Karim F. D., Therrien M., Rubin G. M. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev. 1996 Feb 1;10(3):272–278. doi: 10.1101/gad.10.3.272. [DOI] [PubMed] [Google Scholar]
  306. Watanabe G., Howe A., Lee R. J., Albanese C., Shu I. W., Karnezis A. N., Zon L., Kyriakis J., Rundell K., Pestell R. G. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12861–12866. doi: 10.1073/pnas.93.23.12861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Wera S., Fernandez A., Lamb N. J., Turowski P., Hemmings-Mieszczak M., Mayer-Jaekel R. E., Hemmings B. A. Deregulation of translational control of the 65-kDa regulatory subunit (PR65 alpha) of protein phosphatase 2A leads to multinucleated cells. J Biol Chem. 1995 Sep 8;270(36):21374–21381. doi: 10.1074/jbc.270.36.21374. [DOI] [PubMed] [Google Scholar]
  308. Westphal R. S., Anderson K. A., Means A. R., Wadzinski B. E. A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science. 1998 May 22;280(5367):1258–1261. doi: 10.1126/science.280.5367.1258. [DOI] [PubMed] [Google Scholar]
  309. Westphal R. S., Coffee R. L., Jr, Marotta A., Pelech S. L., Wadzinski B. E. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J Biol Chem. 1999 Jan 8;274(2):687–692. doi: 10.1074/jbc.274.2.687. [DOI] [PubMed] [Google Scholar]
  310. Wheat W. H., Roesler W. J., Klemm D. J. Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol. 1994 Sep;14(9):5881–5890. doi: 10.1128/mcb.14.9.5881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Wilson N. J., Moss S. T., Csar X. F., Ward A. C., Hamilton J. A. Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity. Biochem J. 1999 May 1;339(Pt 3):517–524. [PMC free article] [PubMed] [Google Scholar]
  312. Wolff R. A., Dobrowsky R. T., Bielawska A., Obeid L. M., Hannun Y. A. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem. 1994 Jul 29;269(30):19605–19609. [PubMed] [Google Scholar]
  313. Xie H., Clarke S. An enzymatic activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1710–1715. doi: 10.1006/bbrc.1994.2383. [DOI] [PubMed] [Google Scholar]
  314. Xie H., Clarke S. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem. 1993 Jun 25;268(18):13364–13371. [PubMed] [Google Scholar]
  315. Xie H., Clarke S. Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem. 1994 Jan 21;269(3):1981–1984. [PubMed] [Google Scholar]
  316. Xu Z., Williams B. R. The B56alpha regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Mol Cell Biol. 2000 Jul;20(14):5285–5299. doi: 10.1128/mcb.20.14.5285-5299.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Yamashita K., Yasuda H., Pines J., Yasumoto K., Nishitani H., Ohtsubo M., Hunter T., Sugimura T., Nishimoto T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 1990 Dec;9(13):4331–4338. doi: 10.1002/j.1460-2075.1990.tb07882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Yan Y., Mumby M. C. Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. J Biol Chem. 1999 Nov 5;274(45):31917–31924. doi: 10.1074/jbc.274.45.31917. [DOI] [PubMed] [Google Scholar]
  319. Yan Y., Shay J. W., Wright W. E., Mumby M. C. Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation. J Biol Chem. 1997 Jun 13;272(24):15220–15226. doi: 10.1074/jbc.272.24.15220. [DOI] [PubMed] [Google Scholar]
  320. Yan Z., Fedorov S. A., Mumby M. C., Williams R. S. PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol. 2000 Feb;20(3):1021–1029. doi: 10.1128/mcb.20.3.1021-1029.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  321. Yang S. I., Lickteig R. L., Estes R., Rundell K., Walter G., Mumby M. C. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol. 1991 Apr;11(4):1988–1995. doi: 10.1128/mcb.11.4.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Yatsunami J., Komori A., Ohta T., Suganuma M., Fujiki H. Hyperphosphorylation of retinoblastoma protein and p53 by okadaic acid, a tumor promoter. Cancer Res. 1993 Jan 15;53(2):239–241. [PubMed] [Google Scholar]
  323. Yonish-Rouach E. A question of life or death: the p53 tumor suppressor gene. Pathol Biol (Paris) 1997 Dec;45(10):815–823. [PubMed] [Google Scholar]
  324. Zhang W., McClain C., Gau J. P., Guo X. Y., Deisseroth A. B. Hyperphosphorylation of p53 induced by okadaic acid attenuates its transcriptional activation function. Cancer Res. 1994 Aug 15;54(16):4448–4453. [PubMed] [Google Scholar]
  325. Zhang Z., Zhao S., Long F., Zhang L., Bai G., Shima H., Nagao M., Lee E. Y. A mutant of protein phosphatase-1 that exhibits altered toxin sensitivity. J Biol Chem. 1994 Jun 24;269(25):16997–17000. [PubMed] [Google Scholar]
  326. Zhao Y., Boguslawski G., Zitomer R. S., DePaoli-Roach A. A. Saccharomyces cerevisiae homologs of mammalian B and B' subunits of protein phosphatase 2A direct the enzyme to distinct cellular functions. J Biol Chem. 1997 Mar 28;272(13):8256–8262. doi: 10.1074/jbc.272.13.8256. [DOI] [PubMed] [Google Scholar]
  327. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995 Aug 15;14(16):4065–4072. doi: 10.1002/j.1460-2075.1995.tb00078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Zhu T., Matsuzawa S., Mizuno Y., Kamibayashi C., Mumby M. C., Andjelkovic N., Hemmings B. A., Onoé K., Kikuchi K. The interconversion of protein phosphatase 2A between PP2A1 and PP2A0 during retinoic acid-induced granulocytic differentiation and a modification on the catalytic subunit in S phase of HL-60 cells. Arch Biochem Biophys. 1997 Mar 1;339(1):210–217. doi: 10.1006/abbi.1996.9835. [DOI] [PubMed] [Google Scholar]
  329. Zolnierowicz S., Csortos C., Bondor J., Verin A., Mumby M. C., DePaoli-Roach A. A. Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry. 1994 Oct 4;33(39):11858–11867. doi: 10.1021/bi00205a023. [DOI] [PubMed] [Google Scholar]
  330. Zolnierowicz S., Van Hoof C., Andjelković N., Cron P., Stevens I., Merlevede W., Goris J., Hemmings B. A. The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits. Biochem J. 1996 Jul 1;317(Pt 1):187–194. doi: 10.1042/bj3170187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. van Lookeren Campagne M., Okamoto K., Prives C., Gill R. Developmental expression and co-localization of cyclin G1 and the B' subunits of protein phosphatase 2a in neurons. Brain Res Mol Brain Res. 1999 Jan 22;64(1):1–10. doi: 10.1016/s0169-328x(98)00283-6. [DOI] [PubMed] [Google Scholar]
  332. van Zyl W. H., Wills N., Broach J. R. A general screen for mutant of Saccharomyces cerevisiae deficient in tRNA biosynthesis. Genetics. 1989 Sep;123(1):55–68. doi: 10.1093/genetics/123.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. van Zyl W., Huang W., Sneddon A. A., Stark M., Camier S., Werner M., Marck C., Sentenac A., Broach J. R. Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Nov;12(11):4946–4959. doi: 10.1128/mcb.12.11.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. von Lindern M., van Baal S., Wiegant J., Raap A., Hagemeijer A., Grosveld G. Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene. Mol Cell Biol. 1992 Aug;12(8):3346–3355. doi: 10.1128/mcb.12.8.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES