Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):461–472. doi: 10.1042/0264-6021:3610461

Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments.

Cheng Wang 1, Lellean JeBailey 1, Neale D Ridgway 1
PMCID: PMC1222328  PMID: 11802775

Abstract

Oxysterol-binding protein (OSBP) is the prototypical member of a class of phospholipid and oxysterol-binding proteins that interacts with the Golgi apparatus and regulates lipid and cholesterol metabolism. As a result of recent sequencing efforts, eleven other OSBP-related proteins (ORPs) have been identified in humans. We have investigated the structure, oxysterol-binding activity, cellular localization and function of ORP4 (also designated OSBP2 or HLM), a homologue that shares the highest degree of similarity with OSBP. Two ORP4 cDNAs were identified: a full-length ORP4 containing a pleckstrin homology (PH) domain and an oxysterol-binding region (designated ORP4-L), and a splice variant in which the PH domain and part of the oxysterol-binding domain were deleted (designated ORP4-S). ORP4 mRNA and protein expression overlapped partially with OSBP and were restricted to brain, heart, muscle and kidney. Like OSBP, ORP4-L bound [3H]25-hydroxycholesterol with high affinity and specificity. In contrast, ORP4-S did not bind [3H]25-hydroxycholesterol or [3H]7-ketocholesterol. Immunofluorescence localization in stably transfected Chinese hamster ovary cells showed that ORP4-S co-localized with vimentin and caused the intermediate filament network to bundle or aggregate. ORP4-L displayed a diffuse staining pattern that did not overlap with vimentin except when the microtubule network was disrupted with nocodazole. Oxysterols had no effect on the localization of either ORP4. Cells overexpressing ORP4-S had a 40% reduction in the esterification of low-density-lipoprotein-derived cholesterol, demonstrating that ORP4 interaction with intermediate filaments inhibits an intracellular cholesterol-transport pathway mediated by vimentin. These studies elucidate a hitherto unknown relationship between OSBPs and the intermediate filament network that influences cholesterol transport.

Full Text

The Full Text of this article is available as a PDF (436.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beh C. T., Cool L., Phillips J., Rine J. Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics. 2001 Mar;157(3):1117–1140. doi: 10.1093/genetics/157.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chou Y. H., Skalli O., Goldman R. D. Intermediate filaments and cytoplasmic networking: new connections and more functions. Curr Opin Cell Biol. 1997 Feb;9(1):49–53. doi: 10.1016/s0955-0674(97)80151-2. [DOI] [PubMed] [Google Scholar]
  3. Colucci-Guyon E., Portier M. M., Dunia I., Paulin D., Pournin S., Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994 Nov 18;79(4):679–694. doi: 10.1016/0092-8674(94)90553-3. [DOI] [PubMed] [Google Scholar]
  4. Daum G., Tuller G., Nemec T., Hrastnik C., Balliano G., Cattel L., Milla P., Rocco F., Conzelmann A., Vionnet C. Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast. 1999 May;15(7):601–614. doi: 10.1002/(SICI)1097-0061(199905)15:7<601::AID-YEA390>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  5. Dawson P. A., Ridgway N. D., Slaughter C. A., Brown M. S., Goldstein J. L. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J Biol Chem. 1989 Oct 5;264(28):16798–16803. [PubMed] [Google Scholar]
  6. Dunham I., Shimizu N., Roe B. A., Chissoe S., Hunt A. R., Collins J. E., Bruskiewich R., Beare D. M., Clamp M., Smink L. J. The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489–495. doi: 10.1038/990031. [DOI] [PubMed] [Google Scholar]
  7. Eckes B., Dogic D., Colucci-Guyon E., Wang N., Maniotis A., Ingber D., Merckling A., Langa F., Aumailley M., Delouvée A. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci. 1998 Jul;111(Pt 13):1897–1907. doi: 10.1242/jcs.111.13.1897. [DOI] [PubMed] [Google Scholar]
  8. Esser V., Limbird L. E., Brown M. S., Goldstein J. L., Russell D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem. 1988 Sep 15;263(26):13282–13290. [PubMed] [Google Scholar]
  9. Faigle W., Colucci-Guyon E., Louvard D., Amigorena S., Galli T. Vimentin filaments in fibroblasts are a reservoir for SNAP23, a component of the membrane fusion machinery. Mol Biol Cell. 2000 Oct;11(10):3485–3494. doi: 10.1091/mbc.11.10.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fang M., Kearns B. G., Gedvilaite A., Kagiwada S., Kearns M., Fung M. K., Bankaitis V. A. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 1996 Dec 2;15(23):6447–6459. [PMC free article] [PubMed] [Google Scholar]
  11. Fang M., Rivas M. P., Bankaitis V. A. The contribution of lipids and lipid metabolism to cellular functions of the Golgi complex. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):85–100. doi: 10.1016/s0167-4889(98)00049-4. [DOI] [PubMed] [Google Scholar]
  12. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  13. Gao Y., Sztul E. A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol. 2001 Mar 5;152(5):877–894. doi: 10.1083/jcb.152.5.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gillard B. K., Clement R., Colucci-Guyon E., Babinet C., Schwarzmann G., Taki T., Kasama T., Marcus D. M. Decreased synthesis of glycosphingolipids in cells lacking vimentin intermediate filaments. Exp Cell Res. 1998 Aug 1;242(2):561–572. doi: 10.1006/excr.1998.4126. [DOI] [PubMed] [Google Scholar]
  15. Gillard B. K., Thurmon L. T., Harrell R. G., Capetanaki Y., Saito M., Yu R. K., Marcus D. M. Biosynthesis of glycosphingolipids is reduced in the absence of a vimentin intermediate filament network. J Cell Sci. 1994 Dec;107(Pt 12):3545–3555. doi: 10.1242/jcs.107.12.3545. [DOI] [PubMed] [Google Scholar]
  16. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  17. Gurland G., Gundersen G. G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol. 1995 Dec;131(5):1275–1290. doi: 10.1083/jcb.131.5.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holwell T. A., Schweitzer S. C., Reyland M. E., Evans R. M. Vimentin-dependent utilization of LDL-cholesterol in human adrenal tumor cells is not associated with the level of expression of apoE, sterol carrier protein-2, or caveolin. J Lipid Res. 1999 Aug;40(8):1440–1452. [PubMed] [Google Scholar]
  19. Jiang B., Brown J. L., Sheraton J., Fortin N., Bussey H. A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast. 1994 Mar;10(3):341–353. doi: 10.1002/yea.320100307. [DOI] [PubMed] [Google Scholar]
  20. Kandutsch A. A., Shown E. P. Assay of oxysterol-binding protein in a mouse fibroblast, cell-free system. Dissociation constant and other properties of the system. J Biol Chem. 1981 Dec 25;256(24):13068–13073. [PubMed] [Google Scholar]
  21. Kandutsch A. A., Thompson E. B. Cytosolic proteins that bind oxygenated sterols. Cellular distribution, specificity, and some properties. J Biol Chem. 1980 Nov 25;255(22):10813–10821. [PubMed] [Google Scholar]
  22. Lagace T. A., Byers D. M., Cook H. W., Ridgway N. D. Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterol-binding protein is dependent on the pleckstrin homology domain. Biochem J. 1997 Aug 15;326(Pt 1):205–213. doi: 10.1042/bj3260205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lagace T. A., Byers D. M., Cook H. W., Ridgway N. D. Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. J Lipid Res. 1999 Jan;40(1):109–116. [PubMed] [Google Scholar]
  24. Lehto M., Laitinen S., Chinetti G., Johansson M., Ehnholm C., Staels B., Ikonen E., Olkkonen V. M. The OSBP-related protein family in humans. J Lipid Res. 2001 Aug;42(8):1203–1213. [PubMed] [Google Scholar]
  25. Levine T. P., Munro S. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr Biol. 1998 Jun 18;8(13):729–739. doi: 10.1016/s0960-9822(98)70296-9. [DOI] [PubMed] [Google Scholar]
  26. Lin J. J., Feramisco J. R. Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody. Cell. 1981 Apr;24(1):185–193. doi: 10.1016/0092-8674(81)90514-6. [DOI] [PubMed] [Google Scholar]
  27. Liscum L., Munn N. J. Intracellular cholesterol transport. Biochim Biophys Acta. 1999 Apr 19;1438(1):19–37. doi: 10.1016/s1388-1981(99)00043-8. [DOI] [PubMed] [Google Scholar]
  28. Mohammadi A., Perry R. J., Storey M. K., Cook H. W., Byers D. M., Ridgway N. D. Golgi localization and phosphorylation of oxysterol binding protein in Niemann-Pick C and U18666A-treated cells. J Lipid Res. 2001 Jul;42(7):1062–1071. [PubMed] [Google Scholar]
  29. Moreira E. F., Jaworski C., Li A., Rodriguez I. R. Molecular and biochemical characterization of a novel oxysterol-binding protein (OSBP2) highly expressed in retina. J Biol Chem. 2001 Jan 26;276(21):18570–18578. doi: 10.1074/jbc.M011259200. [DOI] [PubMed] [Google Scholar]
  30. Rameh L. E., Arvidsson A. k., Carraway K. L., 3rd, Couvillon A. D., Rathbun G., Crompton A., VanRenterghem B., Czech M. P., Ravichandran K. S., Burakoff S. J. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem. 1997 Aug 29;272(35):22059–22066. doi: 10.1074/jbc.272.35.22059. [DOI] [PubMed] [Google Scholar]
  31. Ridgway N. D., Dawson P. A., Ho Y. K., Brown M. S., Goldstein J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol. 1992 Jan;116(2):307–319. doi: 10.1083/jcb.116.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ridgway N. D., Lagace T. A., Cook H. W., Byers D. M. Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization. J Biol Chem. 1998 Nov 20;273(47):31621–31628. doi: 10.1074/jbc.273.47.31621. [DOI] [PubMed] [Google Scholar]
  33. Rivas M. P., Kearns B. G., Xie Z., Guo S., Sekar M. C., Hosaka K., Kagiwada S., York J. D., Bankaitis V. A. Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to "bypass Sec14p" and inositol auxotrophy. Mol Biol Cell. 1999 Jul;10(7):2235–2250. doi: 10.1091/mbc.10.7.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Russell R. L., Cao D., Zhang D., Handschumacher R. E., Pizzorno G. Uridine phosphorylase association with vimentin. Intracellular distribution and localization. J Biol Chem. 2001 Jan 24;276(16):13302–13307. doi: 10.1074/jbc.M008512200. [DOI] [PubMed] [Google Scholar]
  35. Sarria A. J., Panini S. R., Evans R. M. A functional role for vimentin intermediate filaments in the metabolism of lipoprotein-derived cholesterol in human SW-13 cells. J Biol Chem. 1992 Sep 25;267(27):19455–19463. [PubMed] [Google Scholar]
  36. Spudich A., Meyer T., Stryer L. Association of the beta isoform of protein kinase C with vimentin filaments. Cell Motil Cytoskeleton. 1992;22(4):250–256. doi: 10.1002/cm.970220405. [DOI] [PubMed] [Google Scholar]
  37. Storey M. K., Byers D. M., Cook H. W., Ridgway N. D. Cholesterol regulates oxysterol binding protein (OSBP) phosphorylation and Golgi localization in Chinese hamster ovary cells: correlation with stimulation of sphingomyelin synthesis by 25-hydroxycholesterol. Biochem J. 1998 Nov 15;336(Pt 1):247–256. doi: 10.1042/bj3360247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xu Y., Liu Y., Ridgway N. D., McMaster C. R. Novel members of the human oxysterol-binding protein family bind phospholipids and regulate vesicle transport. J Biol Chem. 2001 Feb 26;276(21):18407–18414. doi: 10.1074/jbc.M101204200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES