Abstract
Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose.
Full Text
The Full Text of this article is available as a PDF (448.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASHMORE J., HASTINGS A. B., NESBETT F. B., RENOLD A. E. Studies on carbohydrate metabolism in rat liver slices. VI. Hormonal factors influencing glucose-6-phosphatase. J Biol Chem. 1956 Jan;218(1):77–88. [PubMed] [Google Scholar]
- Abeijon C., Hirschberg C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci. 1992 Jan;17(1):32–36. doi: 10.1016/0968-0004(92)90424-8. [DOI] [PubMed] [Google Scholar]
- Aiston S., Trinh K. Y., Lange A. J., Newgard C. B., Agius L. Glucose-6-phosphatase overexpression lowers glucose 6-phosphate and inhibits glycogen synthesis and glycolysis in hepatocytes without affecting glucokinase translocation. Evidence against feedback inhibition of glucokinase. J Biol Chem. 1999 Aug 27;274(35):24559–24566. doi: 10.1074/jbc.274.35.24559. [DOI] [PubMed] [Google Scholar]
- Ajzannay A., Minassian C., Riou J. P., Mithieux G. Glucose-6-phosphatase specificity after membrane solubilization by detergent treatment. J Biochem. 1994 Dec;116(6):1336–1340. doi: 10.1093/oxfordjournals.jbchem.a124684. [DOI] [PubMed] [Google Scholar]
- Ajzannay A., Mithieux G. Glucose 6-phosphate and mannose 6-phosphate are equally and more actively hydrolyzed by glucose 6-phosphatase during hysteretic transition within intact microsomal membrane than after detergent treatment. Arch Biochem Biophys. 1996 Feb 15;326(2):238–242. doi: 10.1006/abbi.1996.0071. [DOI] [PubMed] [Google Scholar]
- An J., Li Y., van De Werve G., Newgard C. B. Overexpression of the P46 (T1) translocase component of the glucose-6-phosphatase complex in hepatocytes impairs glycogen accumulation via hydrolysis of glucose 1-phosphate. J Biol Chem. 2001 Jan 8;276(14):10722–10729. doi: 10.1074/jbc.M009525200. [DOI] [PubMed] [Google Scholar]
- Annabi B., Hiraiwa H., Mansfield B. C., Lei K. J., Ubagai T., Polymeropoulos M. H., Moses S. W., Parvari R., Hershkovitz E., Mandel H. The gene for glycogen-storage disease type 1b maps to chromosome 11q23. Am J Hum Genet. 1998 Feb;62(2):400–405. doi: 10.1086/301727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Annabi B., van de Werve G. Evidence that the transit of glucose into liver microsomes is not required for functional glucose-6-phosphatase. Biochem Biophys Res Commun. 1997 Jul 30;236(3):808–813. doi: 10.1006/bbrc.1997.6979. [DOI] [PubMed] [Google Scholar]
- Arden S. D., Zahn T., Steegers S., Webb S., Bergman B., O'Brien R. M., Hutton J. C. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes. 1999 Mar;48(3):531–542. doi: 10.2337/diabetes.48.3.531. [DOI] [PubMed] [Google Scholar]
- Argaud D., Kirby T. L., Newgard C. B., Lange A. J. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J Biol Chem. 1997 May 9;272(19):12854–12861. doi: 10.1074/jbc.272.19.12854. [DOI] [PubMed] [Google Scholar]
- Argaud D., Zhang Q., Pan W., Maitra S., Pilkis S. J., Lange A. J. Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5'-flanking sequence. Diabetes. 1996 Nov;45(11):1563–1571. doi: 10.2337/diab.45.11.1563. [DOI] [PubMed] [Google Scholar]
- Arion W. J., Ballas L. M., Lange A. J., Wallin B. K. Microsomal membrane permeability and the hepatic glucose-6-phosphatase system. Interactions of the system with D-mannose 6-phosphate and D-mannose. J Biol Chem. 1976 Aug 25;251(16):4891–4897. [PubMed] [Google Scholar]
- Arion W. J., Canfield W. K., Callaway E. S., Burger H. J., Hemmerle H., Schubert G., Herling A. W., Oekonomopulos R. Direct evidence for the involvement of two glucose 6-phosphate-binding sites in the glucose-6-phosphatase activity of intact liver microsomes. Characterization of T1, the microsomal glucose 6-phosphate transport protein by a direct binding assay. J Biol Chem. 1998 Mar 13;273(11):6223–6227. doi: 10.1074/jbc.273.11.6223. [DOI] [PubMed] [Google Scholar]
- Arion W. J., Canfield W. K., Ramos F. C., Schindler P. W., Burger H. J., Hemmerle H., Schubert G., Below P., Herling A. W. Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys. 1997 Mar 15;339(2):315–322. doi: 10.1006/abbi.1996.9874. [DOI] [PubMed] [Google Scholar]
- Arion W. J., Canfield W. K., Ramos F. C., Su M. L., Burger H. J., Hemmerle H., Schubert G., Below P., Herling A. W. Chlorogenic acid analogue S 3483: a potent competitive inhibitor of the hepatic and renal glucose-6-phosphatase systems. Arch Biochem Biophys. 1998 Mar 15;351(2):279–285. doi: 10.1006/abbi.1997.0563. [DOI] [PubMed] [Google Scholar]
- Arion W. J., Carlson P. W., Wallin B. K., Lange A. J. Modifications of hydrolytic and synthetic activities of liver microsomal glucose 6-phosphatase. J Biol Chem. 1972 Apr 25;247(8):2551–2557. [PubMed] [Google Scholar]
- Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
- Arion W. J., Nordlie R. C. Liver glucose-6-phosphatase and pyrophosphate-glucose phosphotransferase: effects of fasting. Biochem Biophys Res Commun. 1965 Sep 8;20(5):606–610. doi: 10.1016/0006-291x(65)90442-0. [DOI] [PubMed] [Google Scholar]
- Arion W. J., Wallin B. K., Carlson P. W., Lange A. J. The specificity of glucose 6-phosphatase of intact liver microsomes. J Biol Chem. 1972 Apr 25;247(8):2558–2565. [PubMed] [Google Scholar]
- Arion W. J., Wallin B. K. Kinetics of the glucose 6-phosphate-glucose exchange activity and glucose inhibition of glucose 6-phosphatase of intact and disrupted rat liver microsomes. J Biol Chem. 1973 Apr 10;248(7):2372–2379. [PubMed] [Google Scholar]
- Arion W. J., Wallin B. K., Lange A. J., Ballas L. M. On the involvement of a glucose 6-phosphate transport system in the function of microsomal glucose 6-phosphatase. Mol Cell Biochem. 1975 Feb 28;6(2):75–83. doi: 10.1007/BF01732001. [DOI] [PubMed] [Google Scholar]
- Ayala J. E., Streeper R. S., Desgrosellier J. S., Durham S. K., Suwanichkul A., Svitek C. A., Goldman J. K., Barr F. G., Powell D. R., O'Brien R. M. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes. 1999 Sep;48(9):1885–1889. doi: 10.2337/diabetes.48.9.1885. [DOI] [PubMed] [Google Scholar]
- BEAUFAY H., DE DUVE C. Le système hexose-phosphatasique. IV. Spécificité de la glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1525–1537. [PubMed] [Google Scholar]
- BEAUFAY H., DE DUVE C. Le système hexose-phosphatasique. VI. Essais de démembrement des microsomes porteurs de glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1551–1568. [PubMed] [Google Scholar]
- BEAUFAY H., HERS H. G., BERTHET J., DE DUVE C. Le sustème hexose-phosphatasique. V. Influence de divers agents sur l'activité et la stabilité de la glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1539–1550. [PubMed] [Google Scholar]
- Ballas L. M., Arion W. J. Measurement of glucose 6-phosphate penetration into liver microsomes. Confirmation of substrate transport in the glucose-6-phosphatase system. J Biol Chem. 1977 Dec 10;252(23):8512–8518. [PubMed] [Google Scholar]
- Barthel A., Schmoll D., Krüger K. D., Bahrenberg G., Walther R., Roth R. A., Joost H. G. Differential regulation of endogenous glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression by the forkhead transcription factor FKHR in H4IIE-hepatoma cells. Biochem Biophys Res Commun. 2001 Jul 27;285(4):897–902. doi: 10.1006/bbrc.2001.5261. [DOI] [PubMed] [Google Scholar]
- Bashan N., Hagai Y., Potashnik R., Moses S. W. Impaired carbohydrate metabolism of polymorphonuclear leukocytes in glycogen storage disease Ib. J Clin Invest. 1988 May;81(5):1317–1322. doi: 10.1172/JCI113457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashan N., Potashnik R., Peist A., Peleg N., Moran A., Moses S. W. Deficient glucose phosphorylation as a possible common denominator and its relation to abnormal leucocyte function, in glycogen storage disease 1b patients. Eur J Pediatr. 1993;152 (Suppl 1):S44–S48. doi: 10.1007/BF02072087. [DOI] [PubMed] [Google Scholar]
- Beaudet A. L., Anderson D. C., Michels V. V., Arion W. J., Lange A. J. Neutropenia and impaired neutrophil migration in type IB glycogen storage disease. J Pediatr. 1980 Dec;97(6):906–910. doi: 10.1016/s0022-3476(80)80418-5. [DOI] [PubMed] [Google Scholar]
- Benedetti A., Fulceri R., Comporti M. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase. Biochim Biophys Acta. 1985 Jun 27;816(2):267–277. doi: 10.1016/0005-2736(85)90494-8. [DOI] [PubMed] [Google Scholar]
- Benedetto J. P., Got R. Effet de petites protéines basiques sur les activitiés phosphohydrolase et phosphotransférase de la glucose-6-phosphatase microsomique des hépatocytes de singe. Biochim Biophys Acta. 1980 Aug 7;614(2):400–406. doi: 10.1016/0005-2744(80)90229-6. [DOI] [PubMed] [Google Scholar]
- Berteloot A., St-Denis J. F., van de Werve G. Evidence for a membrane exchangeable glucose pool in the functioning of rat liver glucose-6-phosphatase. J Biol Chem. 1995 Sep 8;270(36):21098–21102. [PubMed] [Google Scholar]
- Berteloot A., Vidal H., van de Werve G. Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity. J Biol Chem. 1991 Mar 25;266(9):5497–5507. [PubMed] [Google Scholar]
- Beutler E., Morrison M. Localization and characteristics of hexose 6-phosphate dehydrogenase (glucose dehydrogenase). J Biol Chem. 1967 Nov 25;242(22):5289–5293. [PubMed] [Google Scholar]
- Blair J. N., Burchell A. The mechanism of histone activation of the hepatic microsomal glucose-6-phosphatase system: a novel method to assay glucose-6-phosphatase activity. Biochim Biophys Acta. 1988 Feb 17;964(2):161–167. doi: 10.1016/0304-4165(88)90162-6. [DOI] [PubMed] [Google Scholar]
- Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burchell A. A re-evaluation of GLUT 7. Biochem J. 1998 May 1;331(Pt 3):973–973. doi: 10.1042/bj3310973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burchell A., Burchell B. Identification and purification of a liver microsomal glucose 6-phosphatase. Biochem J. 1982 Sep 1;205(3):567–573. doi: 10.1042/bj2050567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burchell A., Gibb L. Diagnosis of type 1B and 1C glycogen storage disease. J Inherit Metab Dis. 1991;14(3):305–307. doi: 10.1007/BF01811688. [DOI] [PubMed] [Google Scholar]
- Burchell A., Jung R. T., Lang C. C., Bennet W., Shepherd A. N. Diagnosis of type 1a and type 1c glycogen storage diseases in adults. Lancet. 1987 May 9;1(8541):1059–1062. doi: 10.1016/s0140-6736(87)90484-3. [DOI] [PubMed] [Google Scholar]
- Burchell A. Molecular pathology of glucose-6-phosphatase. FASEB J. 1990 Sep;4(12):2978–2988. doi: 10.1096/fasebj.4.12.2168325. [DOI] [PubMed] [Google Scholar]
- Burchell A., Waddell I. D. Diagnosis of a novel glycogen storage disease: type 1aSP. J Inherit Metab Dis. 1990;13(3):247–249. doi: 10.1007/BF01799362. [DOI] [PubMed] [Google Scholar]
- Bánhegyi G., Marcolongo P., Burchell A., Benedetti A. Heterogeneity of glucose transport in rat liver microsomal vesicles. Arch Biochem Biophys. 1998 Nov 1;359(1):133–138. doi: 10.1006/abbi.1998.0888. [DOI] [PubMed] [Google Scholar]
- Bánhegyi G., Marcolongo P., Fulceri R., Hinds C., Burchell A., Benedetti A. Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles. J Biol Chem. 1997 May 23;272(21):13584–13590. doi: 10.1074/jbc.272.21.13584. [DOI] [PubMed] [Google Scholar]
- CORI G. T., CORI C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem. 1952 Dec;199(2):661–667. [PubMed] [Google Scholar]
- Carayannopoulos M. O., Chi M. M., Cui Y., Pingsterhaus J. M., McKnight R. A., Mueckler M., Devaskar S. U., Moley K. H. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7313–7318. doi: 10.1073/pnas.97.13.7313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatelain F., Pégorier J. P., Minassian C., Bruni N., Tarpin S., Girard J., Mithieux G. Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes. 1998 Jun;47(6):882–889. doi: 10.2337/diabetes.47.6.882. [DOI] [PubMed] [Google Scholar]
- Chen L. Y., Lin B., Pan C. J., Hiraiwa H., Chou J. Y. Structural requirements for the stability and microsomal transport activity of the human glucose 6-phosphate transporter. J Biol Chem. 2000 Nov 3;275(44):34280–34286. doi: 10.1074/jbc.M006439200. [DOI] [PubMed] [Google Scholar]
- Chen P. Y., Csutora P., Veyna-Burke N. A., Marchase R. B. Glucose-6-phosphate and Ca2+ sequestration are mutually enhanced in microsomes from liver, brain, and heart. Diabetes. 1998 Jun;47(6):874–881. doi: 10.2337/diabetes.47.6.874. [DOI] [PubMed] [Google Scholar]
- Chou J. Y., Ruppert S., Shelly L. L., Pan C. J. Isolation and characterization of mouse hepatocyte lines carrying a lethal albino deletion. J Biol Chem. 1991 Mar 25;266(9):5716–5722. [PubMed] [Google Scholar]
- Clottes E., Burchell A. Three thiol groups are important for the activity of the liver microsomal glucose-6-phosphatase system. Unusual behavior of one thiol located in the glucose-6-phosphate translocase. J Biol Chem. 1998 Jul 31;273(31):19391–19397. doi: 10.1074/jbc.273.31.19391. [DOI] [PubMed] [Google Scholar]
- Collard F., Collet J. F., Gerin I., Veiga-da-Cunha M., Van Schaftingen E. Identification of the cDNA encoding human 6-phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway(1). FEBS Lett. 1999 Oct 8;459(2):223–226. doi: 10.1016/s0014-5793(99)01247-8. [DOI] [PubMed] [Google Scholar]
- Countaway J. L., Waddell I. D., Burchell A., Arion W. J. The phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system is a 36.5-kilodalton polypeptide. J Biol Chem. 1988 Feb 25;263(6):2673–2678. [PubMed] [Google Scholar]
- Craik J. D., Elliott K. R. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J. 1979 Aug 15;182(2):503–508. doi: 10.1042/bj1820503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croset M., Rajas F., Zitoun C., Hurot J. M., Montano S., Mithieux G. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes. 2001 Apr;50(4):740–746. doi: 10.2337/diabetes.50.4.740. [DOI] [PubMed] [Google Scholar]
- Daniele N., Rajas F., Payrastre B., Mauco G., Zitoun C., Mithieux G. Phosphatidylinositol 3-kinase translocates onto liver endoplasmic reticulum and may account for the inhibition of glucose-6-phosphatase during refeeding. J Biol Chem. 1999 Feb 5;274(6):3597–3601. doi: 10.1074/jbc.274.6.3597. [DOI] [PubMed] [Google Scholar]
- Danièle N., Bordet J. C., Mithieux G. Unsaturated fatty acids associated with glycogen may inhibit glucose-6 phosphatase in rat liver. J Nutr. 1997 Dec;127(12):2289–2292. doi: 10.1093/jn/127.12.2289. [DOI] [PubMed] [Google Scholar]
- Dawson C. M., Hales C. N. The inhibition of rat liver glucokinase by palmitoyl-CoA. Biochim Biophys Acta. 1969 Apr 29;176(3):657–659. doi: 10.1016/0005-2760(69)90238-0. [DOI] [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. Reduced sensitivity of the hepatic adenylate cyclase-cyclic AMP system to glucagon during sustained hormonal stimulation. J Clin Invest. 1976 Feb;57(2):435–443. doi: 10.1172/JCI108294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickens M., Svitek C. A., Culbert A. A., O'Brien R. M., Tavaré J. M. Central role for phosphatidylinositide 3-kinase in the repression of glucose-6-phosphatase gene transcription by insulin. J Biol Chem. 1998 Aug 7;273(32):20144–20149. doi: 10.1074/jbc.273.32.20144. [DOI] [PubMed] [Google Scholar]
- Doege H., Bocianski A., Joost H. G., Schürmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J. 2000 Sep 15;350(Pt 3):771–776. [PMC free article] [PubMed] [Google Scholar]
- Ebert D. H., Bischof L. J., Streeper R. S., Chapman S. C., Svitek C. A., Goldman J. K., Mathews C. E., Leiter E. H., Hutton J. C., O'Brien R. M. Structure and promoter activity of an islet-specific glucose-6-phosphatase catalytic subunit-related gene. Diabetes. 1999 Mar;48(3):543–551. doi: 10.2337/diabetes.48.3.543. [DOI] [PubMed] [Google Scholar]
- Eiglmeier K., Boos W., Cole S. T. Nucleotide sequence and transcriptional startpoint of the glpT gene of Escherichia coli: extensive sequence homology of the glycerol-3-phosphate transport protein with components of the hexose-6-phosphate transport system. Mol Microbiol. 1987 Nov;1(3):251–258. doi: 10.1111/j.1365-2958.1987.tb01931.x. [DOI] [PubMed] [Google Scholar]
- Exton J. H., Park C. R. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver. J Biol Chem. 1969 Mar 25;244(6):1424–1433. [PubMed] [Google Scholar]
- Faulkner A., Chen X., Rush J., Horazdovsky B., Waechter C. J., Carman G. M., Sternweis P. C. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem. 1999 May 21;274(21):14831–14837. doi: 10.1074/jbc.274.21.14831. [DOI] [PubMed] [Google Scholar]
- Feldman F., Butler L. G. Detection and characterization of the phosphorylated form of microsomal glucose-6-phosphatase. Biochem Biophys Res Commun. 1969 Jul 7;36(1):119–125. doi: 10.1016/0006-291x(69)90657-3. [DOI] [PubMed] [Google Scholar]
- Feldman F., Butler L. G. Protein-bound phosphoryl histidine: a probable intermediate in the microsomal glucose-6-phosphatase-inorganic pyrophosphatase reaction. Biochim Biophys Acta. 1972 Jun 16;268(3):698–710. doi: 10.1016/0005-2744(72)90274-4. [DOI] [PubMed] [Google Scholar]
- Fenske C. D., Jeffery S., Weber J. L., Houlston R. S., Leonard J. V., Lee P. J. Localisation of the gene for glycogen storage disease type 1c by homozygosity mapping to 11q. J Med Genet. 1998 Apr;35(4):269–272. doi: 10.1136/jmg.35.4.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher C. J., Stetten M. R. Parallel changes in vivo in microsomal inorganic pyrophosphatase, pyrophosphate-glucose phosphotransferase and glucose 6-phosphatase activities. Biochim Biophys Acta. 1966 May 26;121(1):102–109. doi: 10.1016/0304-4165(66)90352-7. [DOI] [PubMed] [Google Scholar]
- Forsyth R. J., Bartlett K., Burchell A., Scott H. M., Eyre J. A. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate. Biochem J. 1993 Aug 15;294(Pt 1):145–151. doi: 10.1042/bj2940145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster J. D., Bode A. M., Nordlie R. C. Time-dependent inhibition of glucose 6-phosphatase by 3-mercaptopicolinic acid. Biochim Biophys Acta. 1994 Oct 19;1208(2):222–228. doi: 10.1016/0167-4838(94)90107-4. [DOI] [PubMed] [Google Scholar]
- Foster J. D., Pederson B. A., Nordlie R. C. Glucose-6-phosphatase structure, regulation, and function: an update. Proc Soc Exp Biol Med. 1997 Sep;215(4):314–332. doi: 10.3181/00379727-215-44142. [DOI] [PubMed] [Google Scholar]
- Foster J. D., Young S. E., Brandt T. D., Nordlie R. C. Tungstate: a potent inhibitor of multifunctional glucose-6-phosphatase. Arch Biochem Biophys. 1998 Jun 1;354(1):125–132. doi: 10.1006/abbi.1998.0695. [DOI] [PubMed] [Google Scholar]
- Friedrich M. J., Kadner R. J. Nucleotide sequence of the uhp region of Escherichia coli. J Bacteriol. 1987 Aug;169(8):3556–3563. doi: 10.1128/jb.169.8.3556-3563.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulceri R., Bellomo G., Gamberucci A., Scott H. M., Burchell A., Benedetti A. Permeability of rat liver microsomal membrane to glucose 6-phosphate. Biochem J. 1992 Sep 15;286(Pt 3):813–817. doi: 10.1042/bj2860813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulceri R., Gamberucci A., Scott H. M., Giunti R., Burchell A., Benedetti A. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes. Biochem J. 1995 Apr 15;307(Pt 2):391–397. doi: 10.1042/bj3070391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulceri R., Kardon T., Bánhegyi G., Pralong W. F., Gamberucci A., Marcolongo P., Benedetti A. Glucose-6-phosphatase in the insulin secreting cell line INS-1. Biochem Biophys Res Commun. 2000 Aug 18;275(1):103–107. doi: 10.1006/bbrc.2000.3228. [DOI] [PubMed] [Google Scholar]
- Fulceri R., Romani A., Pompella A., Benedetti A. Glucose 6-phosphate stimulation of MgATP-dependent Ca2+ uptake by rat kidney microsomes. Biochim Biophys Acta. 1990 Feb 16;1022(1):129–133. doi: 10.1016/0005-2736(90)90409-h. [DOI] [PubMed] [Google Scholar]
- Galli L., Orrico A., Marcolongo P., Fulceri R., Burchell A., Melis D., Parini R., Gatti R., Lam C., Benedetti A. Mutations in the glucose-6-phosphate transporter (G6PT) gene in patients with glycogen storage diseases type 1b and 1c. FEBS Lett. 1999 Oct 8;459(2):255–258. doi: 10.1016/s0014-5793(99)01248-x. [DOI] [PubMed] [Google Scholar]
- Gamberucci A., Marcolongo P., Fulceri R., Giunti R., Watkins S. L., Waddell I. D., Burchell A., Benedetti A. Low levels of glucose-6-phosphate hydrolysis in the sarcoplasmic reticulum of skeletal muscle: involvement of glucose-6-phosphatase. Mol Membr Biol. 1996 Apr-Jun;13(2):103–108. doi: 10.3109/09687689609160583. [DOI] [PubMed] [Google Scholar]
- Garland R. C. Induction of glucose 6-phosphatase in cultured hepatoma cells by dexamethasone. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1130–1134. doi: 10.1016/s0006-291x(86)80295-9. [DOI] [PubMed] [Google Scholar]
- Gerin I., Noël G., Van Schaftingen E. Novel arguments in favor of the substrate-transport model of glucose-6-phosphatase. Diabetes. 2001 Jul;50(7):1531–1538. doi: 10.2337/diabetes.50.7.1531. [DOI] [PubMed] [Google Scholar]
- Gerin I., Veiga-da-Cunha M., Achouri Y., Collet J. F., Van Schaftingen E. Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett. 1997 Dec 15;419(2-3):235–238. doi: 10.1016/s0014-5793(97)01463-4. [DOI] [PubMed] [Google Scholar]
- Gerin I., Veiga-da-Cunha M., Noël G., Van Schaftingen E. Structure of the gene mutated in glycogen storage disease type Ib. Gene. 1999 Feb 18;227(2):189–195. doi: 10.1016/s0378-1119(98)00614-3. [DOI] [PubMed] [Google Scholar]
- Gibb G. M., Reid G. P., Lindsay J. G. Purification and characterization of the phosphate/hydroxyl ion antiport protein from rat liver mitochondria. Biochem J. 1986 Sep 1;238(2):543–551. doi: 10.1042/bj2380543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitzelmann R., Bosshard N. U. Defective neutrophil and monocyte functions in glycogen storage disease type Ib: a literature review. Eur J Pediatr. 1993;152 (Suppl 1):S33–S38. doi: 10.1007/BF02072085. [DOI] [PubMed] [Google Scholar]
- Gluecksohn-Waelsch S. Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse. Cell. 1979 Feb;16(2):225–237. doi: 10.1016/0092-8674(79)90001-1. [DOI] [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greengard O. The hormonal regulation of enzymes in penatal and postnatal rat liver. Effects of adenosine 3',5'-(cyclic)-monophosphate. Biochem J. 1969 Oct;115(1):19–24. doi: 10.1042/bj1150019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groen A. K., Vervoorn R. C., Van der Meer R., Tager J. M. Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem. 1983 Dec 10;258(23):14346–14353. [PubMed] [Google Scholar]
- Guillam M. T., Burcelin R., Thorens B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12317–12321. doi: 10.1073/pnas.95.21.12317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERS H. G., BERTHET J., BERTHET L., DE DUVE C. Le système hexose-phosphatasique. III. Localisation intra-cellulaire des ferments par centrifugation fractionnée. Bull Soc Chim Biol (Paris) 1951;33(1-2):21–41. [PubMed] [Google Scholar]
- HERS H. G., DE DUVE C. Le système hexose-phosphatasique. II. Répartition de l'activité glucose-6-phosphatasique dans les tissus. Bull Soc Chim Biol (Paris) 1950;32(1-2):20–29. [PubMed] [Google Scholar]
- Hemmerle H., Burger H. J., Below P., Schubert G., Rippel R., Schindler P. W., Paulus E., Herling A. W. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase. J Med Chem. 1997 Jan 17;40(2):137–145. doi: 10.1021/jm9607360. [DOI] [PubMed] [Google Scholar]
- Hemrika W., Renirie R., Dekker H. L., Barnett P., Wever R. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2145–2149. doi: 10.1073/pnas.94.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemrika W., Wever R. A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett. 1997 Jun 16;409(3):317–319. doi: 10.1016/s0014-5793(97)00530-9. [DOI] [PubMed] [Google Scholar]
- Herling A. W., Burger H. J., Schwab D., Hemmerle H., Below P., Schubert G. Pharmacodynamic profile of a novel inhibitor of the hepatic glucose-6-phosphatase system. Am J Physiol. 1998 Jun;274(6 Pt 1):G1087–G1093. doi: 10.1152/ajpgi.1998.274.6.G1087. [DOI] [PubMed] [Google Scholar]
- Herling A. W., Burger H., Schubert G., Hemmerle H., Schaefer H., Kramer W. Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol. 1999 Dec 10;386(1):75–82. doi: 10.1016/s0014-2999(99)00748-7. [DOI] [PubMed] [Google Scholar]
- Hers H. G., Hue L. Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem. 1983;52:617–653. doi: 10.1146/annurev.bi.52.070183.003153. [DOI] [PubMed] [Google Scholar]
- Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
- Hino Y., Ishio S., Minakami S. Glucose-6-phosphate oxidation pathway in rat-liver microsomal vesicles. Stimulation under oxidative stress. Eur J Biochem. 1987 May 15;165(1):195–199. doi: 10.1111/j.1432-1033.1987.tb11211.x. [DOI] [PubMed] [Google Scholar]
- Hiraiwa H., Pan C. J., Lin B., Akiyama T. E., Gonzalez F. J., Chou J. Y. A molecular link between the common phenotypes of type 1 glycogen storage disease and HNF1alpha-null mice. J Biol Chem. 2000 Dec 19;276(11):7963–7967. doi: 10.1074/jbc.M010523200. [DOI] [PubMed] [Google Scholar]
- Hiraiwa H., Pan C. J., Lin B., Moses S. W., Chou J. Y. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem. 1999 Feb 26;274(9):5532–5536. doi: 10.1074/jbc.274.9.5532. [DOI] [PubMed] [Google Scholar]
- Hori S. H., Takahashi T. Latency of microsomal hexose-6-phosphate dehydrogenase activity. Biochim Biophys Acta. 1977 Jan 24;496(1):1–11. doi: 10.1016/0304-4165(77)90109-x. [DOI] [PubMed] [Google Scholar]
- Hornbuckle L. A., Edgerton D. S., Ayala J. E., Svitek C. A., Oeser J. K., Neal D. W., Cardin S., Cherrington A. D., O'Brien R. M. Selective tonic inhibition of G-6-Pase catalytic subunit, but not G-6-P transporter, gene expression by insulin in vivo. Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E713–E725. doi: 10.1152/ajpendo.2001.281.4.E713. [DOI] [PubMed] [Google Scholar]
- Hou D. C., Kure S., Suzuki Y., Hasegawa Y., Hara Y., Inoue T., Kida Y., Matsubara Y., Narisawa K. Glycogen storage disease type Ib: structural and mutational analysis of the microsomal glucose-6-phosphate transporter gene. Am J Med Genet. 1999 Sep 17;86(3):253–257. doi: 10.1002/(sici)1096-8628(19990917)86:3<253::aid-ajmg11>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- Huyer G., Liu S., Kelly J., Moffat J., Payette P., Kennedy B., Tsaprailis G., Gresser M. J., Ramachandran C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem. 1997 Jan 10;272(2):843–851. doi: 10.1074/jbc.272.2.843. [DOI] [PubMed] [Google Scholar]
- Ichai C., Guignot L., El-Mir M. Y., Nogueira V., Guigas B., Chauvin C., Fontaine E., Mithieux G., Leverve X. M. Glucose 6-phosphate hydrolysis is activated by glucagon in a low temperature-sensitive manner. J Biol Chem. 2001 May 22;276(30):28126–28133. doi: 10.1074/jbc.M010186200. [DOI] [PubMed] [Google Scholar]
- Igarashi Y., Kato S., Narisawa K., Tada K., Amano Y., Mori T., Takeuchi S. A direct evidence for defect in glucose-6-phosphate transport system in hepatic microsomal membrane of glycogen storage disease type IB. Biochem Biophys Res Commun. 1984 Mar 15;119(2):593–597. doi: 10.1016/s0006-291x(84)80290-9. [DOI] [PubMed] [Google Scholar]
- Ihara K., Kuromaru R., Hara T. Genomic structure of the human glucose 6-phosphate translocase gene and novel mutations in the gene of a Japanese patient with glycogen storage disease type Ib. Hum Genet. 1998 Oct;103(4):493–496. doi: 10.1007/s004390050856. [DOI] [PubMed] [Google Scholar]
- Ihara K., Nomura A., Hikino S., Takada H., Hara T. Quantitative analysis of glucose-6-phosphate translocase gene expression in various human tissues and haematopoietic progenitor cells. J Inherit Metab Dis. 2000 Sep;23(6):583–592. doi: 10.1023/a:1005677912539. [DOI] [PubMed] [Google Scholar]
- Jackson M. R., Nilsson T., Peterson P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990 Oct;9(10):3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janecke A. R., Bosshard N. U., Mayatepek E., Schulze A., Gitzelmann R., Burchell A., Bartram C. R., Janssen B. Molecular diagnosis of type 1c glycogen storage disease. Hum Genet. 1999 Mar;104(3):275–277. doi: 10.1007/s004390050948. [DOI] [PubMed] [Google Scholar]
- Khan A., Hong-Lie C., Landau B. R. Glucose-6-phosphatase activity in islets from ob/ob and lean mice and the effect of dexamethasone. Endocrinology. 1995 May;136(5):1934–1938. doi: 10.1210/endo.136.5.7720640. [DOI] [PubMed] [Google Scholar]
- Khan A., Ling Z. C., Pukk K., Herling A. W., Landau B. R., Efendic S. Effects of 3-mercaptopicolinic acid and a derivative of chlorogenic acid (S-3483) on hepatic and islet glucose-6-phosphatase activity. Eur J Pharmacol. 1998 May 22;349(2-3):325–331. doi: 10.1016/s0014-2999(98)00188-5. [DOI] [PubMed] [Google Scholar]
- Kilpatrick L., Garty B. Z., Lundquist K. F., Hunter K., Stanley C. A., Baker L., Douglas S. D., Korchak H. M. Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b. J Clin Invest. 1990 Jul;86(1):196–202. doi: 10.1172/JCI114684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishnani P. S., Bao Y., Wu J. Y., Brix A. E., Lin J. L., Chen Y. T. Isolation and nucleotide sequence of canine glucose-6-phosphatase mRNA: identification of mutation in puppies with glycogen storage disease type Ia. Biochem Mol Med. 1997 Aug;61(2):168–177. doi: 10.1006/bmme.1997.2600. [DOI] [PubMed] [Google Scholar]
- Kishnani P. S., Faulkner E., VanCamp S., Jackson M., Brown T., Boney A., Koeberl D., Chen Y. T. Canine model and genomic structural organization of glycogen storage disease type Ia (GSD Ia). Vet Pathol. 2001 Jan;38(1):83–91. doi: 10.1354/vp.38-1-83. [DOI] [PubMed] [Google Scholar]
- Kramer W., Burger H. J., Arion W. J., Corsiero D., Girbig F., Weyland C., Hemmerle H., Petry S., Habermann P., Herling A. Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling. Biochem J. 1999 May 1;339(Pt 3):629–638. [PMC free article] [PubMed] [Google Scholar]
- Kure S., Hou D. C., Suzuki Y., Yamagishi A., Hiratsuka M., Fukuda T., Sugie H., Kondo N., Matsubara Y., Narisawa K. Glycogen storage disease type Ib without neutropenia. J Pediatr. 2000 Aug;137(2):253–256. doi: 10.1067/mpd.2000.107472. [DOI] [PubMed] [Google Scholar]
- Kure S., Suzuki Y., Matsubara Y., Sakamoto O., Shintaku H., Isshiki G., Hoshida C., Izumi I., Sakura N., Narisawa K. Molecular analysis of glycogen storage disease type Ib: identification of a prevalent mutation among Japanese patients and assignment of a putative glucose-6-phosphate translocase gene to chromosome 11. Biochem Biophys Res Commun. 1998 Jul 20;248(2):426–431. doi: 10.1006/bbrc.1998.8985. [DOI] [PubMed] [Google Scholar]
- Lange A. J., Argaud D., el-Maghrabi M. R., Pan W., Maitra S. R., Pilkis S. J. Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase: regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and cAMP. Biochem Biophys Res Commun. 1994 May 30;201(1):302–309. doi: 10.1006/bbrc.1994.1702. [DOI] [PubMed] [Google Scholar]
- Lange A. J., Arion W. J., Beaudet A. L. Type Ib glycogen storage disease is caused by a defect in the glucose-6-phosphate translocase of the microsomal glucose-6-phosphatase system. J Biol Chem. 1980 Sep 25;255(18):8381–8384. [PubMed] [Google Scholar]
- Lei K. J., Chen H., Pan C. J., Ward J. M., Mosinger B., Jr, Lee E. J., Westphal H., Mansfield B. C., Chou J. Y. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat Genet. 1996 Jun;13(2):203–209. doi: 10.1038/ng0696-203. [DOI] [PubMed] [Google Scholar]
- Lei K. J., Chen Y. T., Chen H., Wong L. J., Liu J. L., McConkie-Rosell A., Van Hove J. L., Ou H. C., Yeh N. J., Pan L. Y. Genetic basis of glycogen storage disease type 1a: prevalent mutations at the glucose-6-phosphatase locus. Am J Hum Genet. 1995 Oct;57(4):766–771. [PMC free article] [PubMed] [Google Scholar]
- Lei K. J., Pan C. J., Liu J. L., Shelly L. L., Chou J. Y. Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Biol Chem. 1995 May 19;270(20):11882–11886. doi: 10.1074/jbc.270.20.11882. [DOI] [PubMed] [Google Scholar]
- Lei K. J., Pan C. J., Shelly L. L., Liu J. L., Chou J. Y. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Clin Invest. 1994 May;93(5):1994–1999. doi: 10.1172/JCI117192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lei K. J., Shelly L. L., Lin B., Sidbury J. B., Chen Y. T., Nordlie R. C., Chou J. Y. Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease types 1a and 1aSP but not 1b and 1c. J Clin Invest. 1995 Jan;95(1):234–240. doi: 10.1172/JCI117645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lei K. J., Shelly L. L., Pan C. J., Sidbury J. B., Chou J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science. 1993 Oct 22;262(5133):580–583. doi: 10.1126/science.8211187. [DOI] [PubMed] [Google Scholar]
- Leuzzi R., Fulceri R., Marcolongo P., Bánhegyi G., Zammarchi E., Stafford K., Burchell A., Benedetti A. Glucose 6-phosphate transport in fibroblast microsomes from glycogen storage disease type 1b patients: evidence for multiple glucose 6-phosphate transport systems. Biochem J. 2001 Jul 15;357(Pt 2):557–562. doi: 10.1042/0264-6021:3570557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y., Méchin M. C., van de Werve G. Diabetes affects similarly the catalytic subunit and putative glucose-6-phosphate translocase of glucose-6-phosphatase. J Biol Chem. 1999 Nov 26;274(48):33866–33868. doi: 10.1074/jbc.274.48.33866. [DOI] [PubMed] [Google Scholar]
- Li Y., van de Werve G. Distinct hormone stimulation and counteraction by insulin of the expression of the two components of glucose 6-phosphatase in HepG2 cells. Biochem Biophys Res Commun. 2000 May 27;272(1):41–44. doi: 10.1006/bbrc.2000.2734. [DOI] [PubMed] [Google Scholar]
- Lin B., Annabi B., Hiraiwa H., Pan C. J., Chou J. Y. Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents. J Biol Chem. 1998 Nov 27;273(48):31656–31660. doi: 10.1074/jbc.273.48.31656. [DOI] [PubMed] [Google Scholar]
- Lin B., Hiraiwa H., Pan C. J., Nordlie R. C., Chou J. Y. Type-1c glycogen storage disease is not caused by mutations in the glucose-6-phosphate transporter gene. Hum Genet. 1999 Nov;105(5):515–517. doi: 10.1007/s004390051140. [DOI] [PubMed] [Google Scholar]
- Lin B., Morris D. W., Chou J. Y. Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids. DNA Cell Biol. 1998 Nov;17(11):967–974. doi: 10.1089/dna.1998.17.967. [DOI] [PubMed] [Google Scholar]
- Lin B., Pan C. J., Chou J. Y. Human variant glucose-6-phosphate transporter is active in microsomal transport. Hum Genet. 2000 Nov;107(5):526–529. doi: 10.1007/s004390000404. [DOI] [PubMed] [Google Scholar]
- Liu Z., Barrett E. J., Dalkin A. C., Zwart A. D., Chou J. Y. Effect of acute diabetes on rat hepatic glucose-6-phosphatase activity and its messenger RNA level. Biochem Biophys Res Commun. 1994 Nov 30;205(1):680–686. doi: 10.1006/bbrc.1994.2719. [DOI] [PubMed] [Google Scholar]
- Lochhead P. A., Salt I. P., Walker K. S., Hardie D. G., Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000 Jun;49(6):896–903. doi: 10.2337/diabetes.49.6.896. [DOI] [PubMed] [Google Scholar]
- Lueck J. D., Nordlie R. C. Carbamyl phosphate: glucose phosphotransferase activity of hepatic microsomal glucose 6-phosphatase at physiological pH. Biochem Biophys Res Commun. 1970 Apr 8;39(1):190–196. doi: 10.1016/0006-291x(70)90776-x. [DOI] [PubMed] [Google Scholar]
- Madsen P., Jakobsen P., Westergaard N. N,N-dibenzyl-N'-benzylidenehydrazines: potent competitive glucose-6-phosphatase catalytic enzyme inhibitors. Bioorg Med Chem Lett. 2001 Aug 20;11(16):2165–2167. doi: 10.1016/s0960-894x(01)00395-x. [DOI] [PubMed] [Google Scholar]
- Madsen P., Lundbeck J. M., Jakobsen P., Varming A. R., Westergaard N. Glucose-6-phosphatase catalytic enzyme inhibitors: synthesis and in vitro evaluation of novel 4,5,6,7-tetrahydrothieno[3,2-c]- and -[2,3-c]pyridines. Bioorg Med Chem. 2000 Sep;8(9):2277–2289. doi: 10.1016/s0968-0896(00)00153-x. [DOI] [PubMed] [Google Scholar]
- Maiden M. C., Davis E. O., Baldwin S. A., Moore D. C., Henderson P. J. Mammalian and bacterial sugar transport proteins are homologous. Nature. 1987 Feb 12;325(6105):641–643. doi: 10.1038/325641a0. [DOI] [PubMed] [Google Scholar]
- Maloney P. C., Ambudkar S. V., Anatharam V., Sonna L. A., Varadhachary A. Anion-exchange mechanisms in bacteria. Microbiol Rev. 1990 Mar;54(1):1–17. doi: 10.1128/mr.54.1.1-17.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandula B., Srivastava S. K., Beutler E. Hexose-6-phosphate dehydrogenase: distribution in rat tissues and effect of diet, age and steroids. Arch Biochem Biophys. 1970 Nov;141(1):155–161. doi: 10.1016/0003-9861(70)90118-9. [DOI] [PubMed] [Google Scholar]
- Marcolongo P., Barone V., Priori G., Pirola B., Giglio S., Biasucci G., Zammarchi E., Parenti G., Burchell A., Benedetti A. Structure and mutation analysis of the glycogen storage disease type 1b gene. FEBS Lett. 1998 Oct 2;436(2):247–250. doi: 10.1016/s0014-5793(98)01129-6. [DOI] [PubMed] [Google Scholar]
- Marcolongo P., Bánhegyi G., Benedetti A., Hinds C. J., Burchell A. Liver microsomal transport of glucose-6-phosphate, glucose, and phosphate in type 1 glycogen storage disease. J Clin Endocrinol Metab. 1998 Jan;83(1):224–229. doi: 10.1210/jcem.83.1.4519. [DOI] [PubMed] [Google Scholar]
- Marcolongo P., Fulceri R., Giunti R., Burchell A., Benedetti A. Permeability of liver microsomal membranes to glucose. Biochem Biophys Res Commun. 1996 Feb 27;219(3):916–922. doi: 10.1006/bbrc.1996.0333. [DOI] [PubMed] [Google Scholar]
- Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
- Martin C. C., Bischof L. J., Bergman B., Hornbuckle L. A., Hilliker C., Frigeri C., Wahl D., Svitek C. A., Wong R., Goldman J. K. Cloning and characterization of the human and rat islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) genes. J Biol Chem. 2001 Apr 10;276(27):25197–25207. doi: 10.1074/jbc.M101549200. [DOI] [PubMed] [Google Scholar]
- Maser E., Bannenberg G. The purification of 11 beta-hydroxysteroid dehydrogenase from mouse liver microsomes. J Steroid Biochem Mol Biol. 1994 Feb;48(2-3):257–263. doi: 10.1016/0960-0760(94)90153-8. [DOI] [PubMed] [Google Scholar]
- Maser E., Netter K. J. Purification and properties of a metyrapone-reducing enzyme from mouse liver microsomes--this ketone is reduced by an aldehyde reductase. Biochem Pharmacol. 1989 Sep 15;38(18):3049–3054. doi: 10.1016/0006-2952(89)90014-2. [DOI] [PubMed] [Google Scholar]
- Mason P. J., Stevens D., Diez A., Knight S. W., Scopes D. A., Vulliamy T. J. Human hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase) encoded at 1p36: coding sequence and expression. Blood Cells Mol Dis. 1999 Feb;25(1):30–37. doi: 10.1006/bcmd.1999.0224. [DOI] [PubMed] [Google Scholar]
- Massillon D., Barzilai N., Chen W., Hu M., Rossetti L. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J Biol Chem. 1996 Apr 26;271(17):9871–9874. doi: 10.1074/jbc.271.17.9871. [DOI] [PubMed] [Google Scholar]
- Massillon D., Barzilai N., Hawkins M., Prus-Wertheimer D., Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes. 1997 Jan;46(1):153–157. doi: 10.2337/diab.46.1.153. [DOI] [PubMed] [Google Scholar]
- Massillon D. Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms. Differential effect of glucose and xylitol. J Biol Chem. 2000 Nov 21;276(6):4055–4062. doi: 10.1074/jbc.M007939200. [DOI] [PubMed] [Google Scholar]
- Matsubara S., Takizawa T., Sato I. Glucose-6-phosphatase is present in normal and pre-eclamptic placental trophoblasts: ultrastructural enzyme-histochemical evidence. Placenta. 1999 Jan;20(1):81–85. doi: 10.1053/plac.1998.0346. [DOI] [PubMed] [Google Scholar]
- McVie-Wylie A. J., Lamson D. R., Chen Y. T. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics. 2001 Feb 15;72(1):113–117. doi: 10.1006/geno.2000.6457. [DOI] [PubMed] [Google Scholar]
- Meissner G., Allen R. Evidence for two types of rat liver microsomes with differing permeability to glucose and other small molecules. J Biol Chem. 1981 Jun 25;256(12):6413–6422. [PubMed] [Google Scholar]
- Meissner G. Ionic permeability of isolated muscle sarcoplasmic reticulum and liver endoplasmic reticulum vesicles. Methods Enzymol. 1988;157:417–437. doi: 10.1016/0076-6879(88)57094-5. [DOI] [PubMed] [Google Scholar]
- Messerschmidt A., Wever R. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):392–396. doi: 10.1073/pnas.93.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middleditch C., Clottes E., Burchell A. A different isoform of the transport protein mutated in the glycogen storage disease 1b is expressed in brain. FEBS Lett. 1998 Aug 14;433(1-2):33–36. doi: 10.1016/s0014-5793(98)00878-3. [DOI] [PubMed] [Google Scholar]
- Mikkelsen J., Knudsen J. Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J. 1987 Dec 15;248(3):709–714. doi: 10.1042/bj2480709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minassian C., Zitoun C., Mithieux G. Differential time course of liver and kidney glucose-6 phosphatase activity during long-term fasting in rat correlates with differential time course of messenger RNA level. Mol Cell Biochem. 1996 Feb 9;155(1):37–41. doi: 10.1007/BF00714331. [DOI] [PubMed] [Google Scholar]
- Mithieux G., Daniele N., Payrastre B., Zitoun C. Liver microsomal glucose-6-phosphatase is competitively inhibited by the lipid products of phosphatidylinositol 3-kinase. J Biol Chem. 1998 Jan 2;273(1):17–19. doi: 10.1074/jbc.273.1.17. [DOI] [PubMed] [Google Scholar]
- Mithieux G. New data and concepts on glutamine and glucose metabolism in the gut. Curr Opin Clin Nutr Metab Care. 2001 Jul;4(4):267–271. doi: 10.1097/00075197-200107000-00004. [DOI] [PubMed] [Google Scholar]
- Mithieux G., Zitoun C. Mechanisms by which fatty-acyl-CoA esters inhibit or activate glucose-6-phosphatase in intact and detergent-treated rat liver microsomes. Eur J Biochem. 1996 Feb 1;235(3):799–803. doi: 10.1111/j.1432-1033.1996.00799.x. [DOI] [PubMed] [Google Scholar]
- Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
- Méchin M. C., Annabi B., Pegorier J. P., van de Werve G. Ontogeny of the catalytic subunit and putative glucose-6-phosphate transporter proteins of the rat microsomal liver glucose-6-phosphatase system. Metabolism. 2000 Sep;49(9):1200–1203. doi: 10.1053/meta.2000.7714. [DOI] [PubMed] [Google Scholar]
- Méchin M. C., van de Werve G. Glucose-6-phosphate transporter and receptor functions of the glucose 6-phosphatase system analyzed from a consensus defined by multiple alignments. Proteins. 2000 Nov 1;41(2):164–172. doi: 10.1002/1097-0134(20001101)41:2<164::aid-prot20>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- NORDLIE R. C., ARION W. J. EVIDENCE FOR THE COMMON IDENTITY OF GLUCOSE 6-PHOSPHATASE, INORGANIC PYROPHOSPHATASE, AND PYROPHOSPHATE-GLUCOSE PHOSPHOTRANSFERASE. J Biol Chem. 1964 Jun;239:1680–1685. [PubMed] [Google Scholar]
- Nagl S., Mayer W. E., Klein J. Isolation and sequencing of cDNA clones coding for the catalytic unit of glucose-6-phosphatase from two haplochromine cichlid fishes. DNA Seq. 1999;10(1):25–29. doi: 10.3109/10425179909033932. [DOI] [PubMed] [Google Scholar]
- Narisawa K., Igarashi Y., Otomo H., Tada K. A new variant of glycogen storage disease type I probably due to a defect in the glucose-6-phosphate transport system. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1360–1364. doi: 10.1016/0006-291x(78)91371-2. [DOI] [PubMed] [Google Scholar]
- Neuwald A. F. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci. 1997 Aug;6(8):1764–1767. doi: 10.1002/pro.5560060817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlie R. C., Arion W. J., Glende E. A., Jr Liver microsomal glucose 6-phosphatase, inorganic pyrophosphatase, and pyrophosphate-glucose phosphotransferase. IV. Effects of adrenalectomy and cortisone administration on activities assayed in the absence and presence of deoxycholate. J Biol Chem. 1965 Sep;240(9):3479–3484. [PubMed] [Google Scholar]
- Nordlie R. C. Metabolic regulation by multifunctional glucose-6-phosphatase. Curr Top Cell Regul. 1974;8(0):33–117. doi: 10.1016/b978-0-12-152808-9.50009-2. [DOI] [PubMed] [Google Scholar]
- Nordlie R. C., Scott H. M., Waddell I. D., Hume R., Burchell A. Analysis of human hepatic microsomal glucose-6-phosphatase in clinical conditions where the T2 pyrophosphate/phosphate transport protein is absent. Biochem J. 1992 Feb 1;281(Pt 3):859–863. doi: 10.1042/bj2810859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlie R. C., Sukalski K. A., Muñoz J. M., Baldwin J. J. Type Ic, a novel glycogenosis. Underlying mechanism. J Biol Chem. 1983 Aug 25;258(16):9739–9744. [PubMed] [Google Scholar]
- O'Brien R. M., Streeper R. S., Ayala J. E., Stadelmaier B. T., Hornbuckle L. A. Insulin-regulated gene expression. Biochem Soc Trans. 2001 Aug;29(Pt 4):552–558. doi: 10.1042/bst0290552. [DOI] [PubMed] [Google Scholar]
- Ozols J. Isolation and the complete amino acid sequence of lumenal endoplasmic reticulum glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5302–5306. doi: 10.1073/pnas.90.11.5302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan C. J., Lei K. J., Annabi B., Hemrika W., Chou J. Y. Transmembrane topology of glucose-6-phosphatase. J Biol Chem. 1998 Mar 13;273(11):6144–6148. doi: 10.1074/jbc.273.11.6144. [DOI] [PubMed] [Google Scholar]
- Pan C. J., Lei K. J., Chen H., Ward J. M., Chou J. Y. Ontogeny of the murine glucose-6-phosphatase system. Arch Biochem Biophys. 1998 Oct 1;358(1):17–24. doi: 10.1006/abbi.1998.0849. [DOI] [PubMed] [Google Scholar]
- Pan C. J., Lei K. J., Chou J. Y. Asparagine-linked oligosaccharides are localized to a luminal hydrophilic loop in human glucose-6-phosphatase. J Biol Chem. 1998 Aug 21;273(34):21658–21662. doi: 10.1074/jbc.273.34.21658. [DOI] [PubMed] [Google Scholar]
- Pan C. J., Lin B., Chou J. Y. Transmembrane topology of human glucose 6-phosphate transporter. J Biol Chem. 1999 May 14;274(20):13865–13869. doi: 10.1074/jbc.274.20.13865. [DOI] [PubMed] [Google Scholar]
- Parker J. C., VanVolkenburg M. A., Levy C. B., Martin W. H., Burk S. H., Kwon Y., Giragossian C., Gant T. G., Carpino P. A., McPherson R. K. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. Diabetes. 1998 Oct;47(10):1630–1636. doi: 10.2337/diabetes.47.10.1630. [DOI] [PubMed] [Google Scholar]
- Pederson B. A., Foster J. D., Nordlie R. C. Low-Km mannose-6-phosphatase as a criterion for microsomal integrity. Biochem Cell Biol. 1998;76(1):115–124. [PubMed] [Google Scholar]
- Phay J. E., Hussain H. B., Moley J. F. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000 Jun 1;66(2):217–220. doi: 10.1006/geno.2000.6195. [DOI] [PubMed] [Google Scholar]
- Potashnik R., Moran A., Moses S. W., Peleg N., Bashan N. Hexose uptake and transport in polymorphonuclear leukocytes from patients with glycogen storage disease Ib. Pediatr Res. 1990 Jul;28(1):19–23. doi: 10.1203/00006450-199007000-00005. [DOI] [PubMed] [Google Scholar]
- Prendergast C. H., Parker K. H., Gray R., Venkatesan S., Bannister P., Castro-Soares J., Murphy K. W., Beard R. W., Regan L., Robinson S. Glucose production by the human placenta in vivo. Placenta. 1999 Sep;20(7):591–598. doi: 10.1053/plac.1999.0419. [DOI] [PubMed] [Google Scholar]
- Puskás F., Marcolongo P., Watkins S. L., Mandl J., Allan B. B., Houston P., Burchell A., Benedetti A., Bánhegyi G. Conformational change of the catalytic subunit of glucose-6-phosphatase in rat liver during the fetal-to-neonatal transition. J Biol Chem. 1999 Jan 1;274(1):117–122. doi: 10.1074/jbc.274.1.117. [DOI] [PubMed] [Google Scholar]
- Rajas F., Bruni N., Montano S., Zitoun C., Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology. 1999 Jul;117(1):132–139. doi: 10.1016/s0016-5085(99)70559-7. [DOI] [PubMed] [Google Scholar]
- Rake J. P., ten Berge A. M., Visser G., Verlind E., Niezen-Koning K. E., Buys C. H., Smit G. P., Scheffer H. Glycogen storage disease type Ia: recent experience with mutation analysis, a summary of mutations reported in the literature and a newly developed diagnostic flow chart. Eur J Pediatr. 2000 May;159(5):322–330. doi: 10.1007/s004310051281. [DOI] [PubMed] [Google Scholar]
- Rozell B., Holmgren A., Hansson H. A. Ultrastructural demonstration of thioredoxin and thioredoxin reductase in rat hepatocytes. Eur J Cell Biol. 1988 Aug;46(3):470–477. [PubMed] [Google Scholar]
- Ruppert S., Boshart M., Bosch F. X., Schmid W., Fournier R. E., Schütz G. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. Cell. 1990 Jun 1;61(5):895–904. doi: 10.1016/0092-8674(90)90200-x. [DOI] [PubMed] [Google Scholar]
- SEGAL H. L., WASHKO M. E. Studies of liver glucose 6-phosphatase. III. Solubilization and properties of the enzyme from normal and diabetic rats. J Biol Chem. 1959 Aug;234(8):1937–1941. [PubMed] [Google Scholar]
- Santer R., Schneppenheim R., Dombrowski A., Götze H., Steinmann B., Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997 Nov;17(3):324–326. doi: 10.1038/ng1197-324. [DOI] [PubMed] [Google Scholar]
- Scherer A., Engelbrecht V., Neises G., May P., Balsam A., Spiekerkötter U., Wendel U., Mödder U. MR imaging of bone marrow in glycogen storage disease type IB in children and young adults. AJR Am J Roentgenol. 2001 Aug;177(2):421–425. doi: 10.2214/ajr.177.2.1770421. [DOI] [PubMed] [Google Scholar]
- Schmoll D., Allan B. B., Burchell A. Cloning and sequencing of the 5' region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett. 1996 Mar 25;383(1-2):63–66. doi: 10.1016/0014-5793(96)00224-4. [DOI] [PubMed] [Google Scholar]
- Schmoll D., Grempler R., Barthel A., Joost H. G., Walther R. Phorbol ester-induced activation of mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase and extracellular-signal-regulated protein kinase decreases glucose-6-phosphatase gene expression. Biochem J. 2001 Aug 1;357(Pt 3):867–873. doi: 10.1042/0264-6021:3570867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmoll D., Walker K. S., Alessi D. R., Grempler R., Burchell A., Guo S., Walther R., Unterman T. G. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem. 2000 Nov 17;275(46):36324–36333. doi: 10.1074/jbc.M003616200. [DOI] [PubMed] [Google Scholar]
- Schmoll D., Wasner C., Hinds C. J., Allan B. B., Walther R., Burchell A. Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells. Biochem J. 1999 Mar 1;338(Pt 2):457–463. [PMC free article] [PubMed] [Google Scholar]
- Schulze H. U., Nolte B., Kannler R. Evidence for changes in the conformational status of rat liver microsomal glucose-6-phosphate:phosphohydrolase during detergent-dependent membrane modification. Effect of p-mercuribenzoate and organomercurial agarose gel on glucose-6-phosphatase of native and detergent-modified microsomes. J Biol Chem. 1986 Dec 15;261(35):16571–16578. [PubMed] [Google Scholar]
- Senior B., Loridan L. Studies of liver glycogenoses, with particular reference to the metabolism of intravenously administered glycerol. N Engl J Med. 1968 Oct 31;279(18):958–965. doi: 10.1056/NEJM196810312791802. [DOI] [PubMed] [Google Scholar]
- Seoane J., Trinh K., O'Doherty R. M., Gómez-Foix A. M., Lange A. J., Newgard C. B., Guinovart J. J. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J Biol Chem. 1997 Oct 24;272(43):26972–26977. doi: 10.1074/jbc.272.43.26972. [DOI] [PubMed] [Google Scholar]
- Shelly L. L., Lei K. J., Pan C. J., Sakata S. F., Ruppert S., Schutz G., Chou J. Y. Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A. J Biol Chem. 1993 Oct 15;268(29):21482–21485. [PubMed] [Google Scholar]
- Shingu R., Nakajima H., Horikawa Y., Hamaguchi T., Yamasaki T., Miyagawa J., Namba M., Hanafusa T., Matsuzawa Y. Expression and distribution of glucose-6-phosphatase catalytic subunit messenger RNA and its changes in the diabetic state. Res Commun Mol Pathol Pharmacol. 1996 Jul;93(1):13–24. [PubMed] [Google Scholar]
- Simon C., Herling A. W., Preibisch G., Burger H. J. Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch Biochem Biophys. 2000 Jan 15;373(2):418–428. doi: 10.1006/abbi.1999.1560. [DOI] [PubMed] [Google Scholar]
- Singh J., Nordlie R. C., Jorgenson R. A. Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase. Biochim Biophys Acta. 1981 Dec 18;678(3):477–482. doi: 10.1016/0304-4165(81)90129-x. [DOI] [PubMed] [Google Scholar]
- Speth M., Schulze H. U. Is thermostability of glucose-6-phosphatase indeed dependent on a stabilizing protein? FEBS Lett. 1986 Jun 23;202(1):32–36. doi: 10.1016/0014-5793(86)80643-3. [DOI] [PubMed] [Google Scholar]
- Speth M., Schulze H. U. Protease inhibitors but not proteases inhibit the glucose-6-phosphatase of native rat liver microsomes. Biochem Biophys Res Commun. 1992 Mar 16;183(2):590–597. doi: 10.1016/0006-291x(92)90523-n. [DOI] [PubMed] [Google Scholar]
- Speth M., Schulze H. U. The purification of a detergent-soluble glucose-6-phosphatase from rat liver. Eur J Biochem. 1992 Sep 15;208(3):643–650. doi: 10.1111/j.1432-1033.1992.tb17230.x. [DOI] [PubMed] [Google Scholar]
- St-Denis J. F., Berteloot A., Vidal H., Annabi B., van de Werve G. Glucose transport and glucose 6-phosphate hydrolysis in intact rat liver microsomes. J Biol Chem. 1995 Sep 8;270(36):21092–21097. [PubMed] [Google Scholar]
- St-Denis J. F., Comte B., Nguyen D. K., Seidman E., Paradis K., Lévy E., van de Werve G. A conformational model for the human liver microsomal glucose-6-phosphatase system: evidence from rapid kinetics and defects in glycogen storage disease type 1. J Clin Endocrinol Metab. 1994 Oct;79(4):955–959. doi: 10.1210/jcem.79.4.7962304. [DOI] [PubMed] [Google Scholar]
- Streeper R. S., Hornbuckle L. A., Svitek C. A., Goldman J. K., Oeser J. K., O'Brien R. M. Protein kinase A phosphorylates hepatocyte nuclear factor-6 and stimulates glucose-6-phosphatase catalytic subunit gene transcription. J Biol Chem. 2001 Mar 7;276(22):19111–19118. doi: 10.1074/jbc.M101442200. [DOI] [PubMed] [Google Scholar]
- Streeper R. S., Svitek C. A., Chapman S., Greenbaum L. E., Taub R., O'Brien R. M. A multicomponent insulin response sequence mediates a strong repression of mouse glucose-6-phosphatase gene transcription by insulin. J Biol Chem. 1997 May 2;272(18):11698–11701. doi: 10.1074/jbc.272.18.11698. [DOI] [PubMed] [Google Scholar]
- Streeper R. S., Svitek C. A., Goldman J. K., O'Brien R. M. Differential role of hepatocyte nuclear factor-1 in the regulation of glucose-6-phosphatase catalytic subunit gene transcription by cAMP in liver- and kidney-derived cell lines. J Biol Chem. 2000 Apr 21;275(16):12108–12118. doi: 10.1074/jbc.275.16.12108. [DOI] [PubMed] [Google Scholar]
- Stukey J., Carman G. M. Identification of a novel phosphatase sequence motif. Protein Sci. 1997 Feb;6(2):469–472. doi: 10.1002/pro.5560060226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada K., Narisawa K., Igarashi Y., Kato S. Glycogen storage disease type IB: a new model of genetic disorders involving the transport system of intracellular membrane. Biochem Med. 1985 Apr;33(2):215–222. doi: 10.1016/0006-2944(85)90030-4. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Hori S. H. Intramembraneous localization of rat liver microsomal hexose-6-phosphate dehydrogenase and membrane permeability to its substrates. Biochim Biophys Acta. 1978 Jun 9;524(2):262–276. doi: 10.1016/0005-2744(78)90163-8. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Martel J., Biber J., Murer H. Effect of P(i) restriction on renal Na(+)-P(i) cotransporter mRNA and immunoreactive protein in X-linked Hyp mice. Am J Physiol. 1995 Jun;268(6 Pt 2):F1062–F1069. doi: 10.1152/ajprenal.1995.268.6.F1062. [DOI] [PubMed] [Google Scholar]
- Tetlow I. J., Bowsher C. G., Emes M. J. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts. Biochem J. 1996 Nov 1;319(Pt 3):717–723. doi: 10.1042/bj3190717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorens B., Sarkar H. K., Kaback H. R., Lodish H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988 Oct 21;55(2):281–290. doi: 10.1016/0092-8674(88)90051-7. [DOI] [PubMed] [Google Scholar]
- Trinh K. Y., O'Doherty R. M., Anderson P., Lange A. J., Newgard C. B. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem. 1998 Nov 20;273(47):31615–31620. doi: 10.1074/jbc.273.47.31615. [DOI] [PubMed] [Google Scholar]
- Van Schaftigen E. Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6-phosphatase. Biochem J. 1995 May 15;308(Pt 1):23–29. doi: 10.1042/bj3080023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Hue L., Hers H. G. Extracellular metabolites in suspensions of isolated hepatocytes. Biochem J. 1987 Dec 1;248(2):517–521. doi: 10.1042/bj2480517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Vandercammen A. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Eur J Biochem. 1989 Jan 15;179(1):173–177. doi: 10.1111/j.1432-1033.1989.tb14537.x. [DOI] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Gerin I., Chen Y. T., Lee P. J., Leonard J. V., Maire I., Wendel U., Vikkula M., Van Schaftingen E. The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur J Hum Genet. 1999 Sep;7(6):717–723. doi: 10.1038/sj.ejhg.5200366. [DOI] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Gerin I., Chen Y. T., de Barsy T., de Lonlay P., Dionisi-Vici C., Fenske C. D., Lee P. J., Leonard J. V., Maire I. A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic. Am J Hum Genet. 1998 Oct;63(4):976–983. doi: 10.1086/302068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Gerin I., Van Schaftingen E. How many forms of glycogen storage disease type I? Eur J Pediatr. 2000 May;159(5):314–318. doi: 10.1007/s004310051279. [DOI] [PubMed] [Google Scholar]
- Vidal H., Berteloot A., Larue M. J., St-Denis J. F., van de Werve G. Interaction of mannose-6-phosphate with the hysteretic transition in glucose-6-phosphate hydrolysis in intact liver microsomes. FEBS Lett. 1992 May 18;302(3):197–200. doi: 10.1016/0014-5793(92)80439-n. [DOI] [PubMed] [Google Scholar]
- Vincent M. F., Marangos P. J., Gruber H. E., Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991 Oct;40(10):1259–1266. doi: 10.2337/diab.40.10.1259. [DOI] [PubMed] [Google Scholar]
- Visser G., Rake J. P., Fernandes J., Labrune P., Leonard J. V., Moses S., Ullrich K., Smit G. P. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr. 2000 Aug;137(2):187–191. doi: 10.1067/mpd.2000.105232. [DOI] [PubMed] [Google Scholar]
- Vértesy L., Burger H. J., Kenja J., Knauf M., Kogler H., Paulus E. F., Ramakrishna N. V., Swamy K. H., Vijayakumar E. K., Hammann P. Kodaistatins, novel inhibitors of glucose-6-phosphate translocase T1 from Aspergillus terreus thom DSM 11247. Isolation and structural elucidation. J Antibiot (Tokyo) 2000 Jul;53(7):677–686. doi: 10.7164/antibiotics.53.677. [DOI] [PubMed] [Google Scholar]
- Vértesy L., Kurz M., Paulus E. F., Schummer D., Hammann P. The chemical structure of mumbaistatin, a novel glucose-6-phosphate translocase inhibitor produced by Streptomyces sp. DSM 11641. J Antibiot (Tokyo) 2001 Apr;54(4):354–363. doi: 10.7164/antibiotics.54.354. [DOI] [PubMed] [Google Scholar]
- Waddell I. D., Lindsay J. G., Burchell A. The identification of T2; the phosphate/pyrophosphate transport protein of the hepatic microsomal glucose-6-phosphatase system. FEBS Lett. 1988 Feb 29;229(1):179–182. doi: 10.1016/0014-5793(88)80822-6. [DOI] [PubMed] [Google Scholar]
- Waddell I. D., Scott H., Grant A., Burchell A. Identification and characterization of a hepatic microsomal glucose transport protein. T3 of the glucose-6-phosphatase system? Biochem J. 1991 Apr 15;275(Pt 2):363–367. doi: 10.1042/bj2750363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waddell I. D., Zomerschoe A. G., Voice M. W., Burchell A. Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose-transport protein GLUT 2. Biochem J. 1992 Aug 15;286(Pt 1):173–177. doi: 10.1042/bj2860173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallin B. K., Arion W. J. The requirement for membrane integrity in the inhibition of hepatic glucose 6-phosphatase by sulfhydryl reagents and taurocholate. Biochem Biophys Res Commun. 1972 Aug 7;48(3):694–699. doi: 10.1016/0006-291x(72)90404-4. [DOI] [PubMed] [Google Scholar]
- Werner A., Dehmelt L., Nalbant P. Na+-dependent phosphate cotransporters: the NaPi protein families. J Exp Biol. 1998 Dec;201(Pt 23):3135–3142. doi: 10.1242/jeb.201.23.3135. [DOI] [PubMed] [Google Scholar]
- Weston B. W., Lin J. L., Muenzer J., Cameron H. S., Arnold R. R., Seydewitz H. H., Mayatepek E., Van Schaftingen E., Veiga-da-Cunha M., Matern D. Glucose-6-phosphatase mutation G188R confers an atypical glycogen storage disease type 1b phenotype. Pediatr Res. 2000 Sep;48(3):329–334. doi: 10.1203/00006450-200009000-00011. [DOI] [PubMed] [Google Scholar]
- Weston L. A., Kadner R. J. Role of uhp genes in expression of the Escherichia coli sugar-phosphate transport system. J Bacteriol. 1988 Aug;170(8):3375–3383. doi: 10.1128/jb.170.8.3375-3383.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiesinger H., Hamprecht B., Dringen R. Metabolic pathways for glucose in astrocytes. Glia. 1997 Sep;21(1):22–34. doi: 10.1002/(sici)1098-1136(199709)21:1<22::aid-glia3>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Browning E. T., Thurman R. G., Scholz R. Inhibition of glucagon effects in perfused rat liver by (+)decanoylcarnitine. J Biol Chem. 1969 Sep 25;244(18):5055–5064. [PubMed] [Google Scholar]
- Xie W., Li Y., Méchin M. C., Van De Werve G. Up-regulation of liver glucose-6-phosphatase in rats fed with a P(i)-deficient diet. Biochem J. 1999 Oct 15;343(Pt 2):393–396. doi: 10.1042/bj3430393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie W., van de Werve G., Berteloot A. An integrated view of the kinetics of glucose and phosphate transport, and of glucose 6-phosphate transport and hydrolysis in intact rat liver microsomes. J Membr Biol. 2001 Jan 15;179(2):113–126. doi: 10.1007/s002320010042. [DOI] [PubMed] [Google Scholar]
- Xie W., van de Werve G., Berteloot A. Probing into the function of the gene product responsible for glycogen storage disease type Ib. FEBS Lett. 2001 Aug 24;504(1-2):23–26. doi: 10.1016/s0014-5793(01)02758-2. [DOI] [PubMed] [Google Scholar]
- Yang Chou J, Mansfield BC. Molecular Genetics of Type 1 Glycogen Storage Diseases. Trends Endocrinol Metab. 1999 Apr;10(3):104–113. doi: 10.1016/s1043-2760(98)00123-4. [DOI] [PubMed] [Google Scholar]
- Zingone A., Hiraiwa H., Pan C. J., Lin B., Chen H., Ward J. M., Chou J. Y. Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J Biol Chem. 2000 Jan 14;275(2):828–832. doi: 10.1074/jbc.275.2.828. [DOI] [PubMed] [Google Scholar]
- Zoccoli M. A., Hoopes R. R., Karnovsky M. L. Identification of a rat liver microsomal polypeptide involved in the transport of glucose 6-phosphate. Labeling with 4,4'-diisothiocyano-1,2-diphenyl[3H]ethane-2,2'-disulfonic acid. J Biol Chem. 1982 Apr 10;257(7):3919–3924. [PubMed] [Google Scholar]
- Zoccoli M. A., Karnovsky M. L. Effect of two inhibitors of anion transport on the hydrolysis of glucose 6-phosphate by rat liver microsomes. Covalent modification of the glucose 6-P transport component. J Biol Chem. 1980 Feb 10;255(3):1113–1119. [PubMed] [Google Scholar]
- van Dijk T. H., van der Sluijs F. H., Wiegman C. H., Baller J. F., Gustafson L. A., Burger H. J., Herling A. W., Kuipers F., Meijer A. J., Reijngoud D. J. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048. J Biol Chem. 2001 May 9;276(28):25727–25735. doi: 10.1074/jbc.M101223200. [DOI] [PubMed] [Google Scholar]
- van de Werve G., Lange A., Newgard C., Méchin M. C., Li Y., Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem. 2000 Mar;267(6):1533–1549. doi: 10.1046/j.1432-1327.2000.01160.x. [DOI] [PubMed] [Google Scholar]