Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Aug 1;365(Pt 3):669–676. doi: 10.1042/BJ20011681

Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system.

Francisco Mansilla 1, Irene Friis 1, Mandana Jadidi 1, Karen M Nielsen 1, Brian F C Clark 1, Charlotte R Knudsen 1
PMCID: PMC1222728  PMID: 11985494

Abstract

In eukaryotes, the eukaryotic translation elongation factor eEF1A responsible for transporting amino-acylated tRNA to the ribosome forms a higher-order complex, eEF1H, with its guanine-nucleotide-exchange factor eEF1B. In metazoans, eEF1B consists of three subunits: eEF1B alpha, eEF1B eta and eEF1B gamma. The first two subunits possess the nucleotide-exchange activity, whereas the role of the last remains poorly defined. In mammals, two active tissue-specific isoforms of eEF1A have been identified. The reason for this pattern of differential expression is unknown. Several models on the basis of in vitro experiments have been proposed for the macromolecular organization of the eEF1H complex. However, these models differ in various aspects. This might be due to the difficulties of handling, particularly the eEF1B beta and eEF1B gamma subunits in vitro. Here, the human eEF1H complex is for the first time mapped using the yeast two-hybrid system, which is a powerful in vivo technique for analysing protein-protein interactions. The following complexes were observed: eEF1A1:eEF1B alpha, eEF1A1:eEF1B beta, eEF1B beta:eEF1B beta, eEF1B alpha:eEF1B gamma, eEF1B beta:eEF1B gamma and eEF1B alpha:eEF1B gamma:eEF1B beta, where the last was observed using a three-hybrid approach. Surprisingly, eEF1A2 showed no or only little affinity for the guanine-nucleotide-exchange factors. Truncated versions of the subunits of eEF1B were used to orientate these subunits within the resulting model. The model unit is a pentamer composed of two molecules of eEF1A, each interacting with either eEF1B alpha or eEF1B beta held together by eEF1B gamma. These units can dimerize via eEF1B beta. Our model is compared with other models, and structural as well as functional aspects of the model are discussed.

Full Text

The Full Text of this article is available as a PDF (142.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amons R., Guerrucci M. A., Karssies R. H., Morales J., Cormier P., Möller W., Bellé R. The leucine-zipper in elongation factor EF-1 delta, a guanine-nucleotide exchange protein, is conserved in Artemia and Xenopus. Biochim Biophys Acta. 1994 Aug 2;1218(3):346–350. doi: 10.1016/0167-4781(94)90187-2. [DOI] [PubMed] [Google Scholar]
  2. Andersen G. R., Pedersen L., Valente L., Chatterjee I., Kinzy T. G., Kjeldgaard M., Nyborg J. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha. Mol Cell. 2000 Nov;6(5):1261–1266. doi: 10.1016/s1097-2765(00)00122-2. [DOI] [PubMed] [Google Scholar]
  3. Bec G., Kerjan P., Waller J. P. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem. 1994 Jan 21;269(3):2086–2092. [PubMed] [Google Scholar]
  4. Bellé R., Cormier P., Poulhe R., Morales J., Huchon D., Mulner-Lorillon O. Protein phosphorylation during meiotic maturation of Xenopus oocytes: cdc2 protein kinase targets. Int J Dev Biol. 1990 Mar;34(1):111–115. [PubMed] [Google Scholar]
  5. Bellé R., Minella O., Cormier P., Morales J., Poulhe R., Mulner-Lorillon O. Phosphorylation of elongation factor-1 (EF-1) by cdc2 kinase. Prog Cell Cycle Res. 1995;1:265–270. doi: 10.1007/978-1-4615-1809-9_21. [DOI] [PubMed] [Google Scholar]
  6. Brands J. H., Maassen J. A., van Hemert F. J., Amons R., Möller W. The primary structure of the alpha subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem. 1986 Feb 17;155(1):167–171. doi: 10.1111/j.1432-1033.1986.tb09472.x. [DOI] [PubMed] [Google Scholar]
  7. Bøgestrand S., Wiborg O., Thirup S., Nyborg J. Analysis and crystallization of a 25 kDa C-terminal fragment of cloned elongation factor Ts from Escherichia coli. FEBS Lett. 1995 Jul 10;368(1):49–54. doi: 10.1016/0014-5793(95)00597-3. [DOI] [PubMed] [Google Scholar]
  8. Carvalho J. F., Carvalho M. D., Merrick W. C. Purification of various forms of elongation factor 1 from rabbit reticulocytes. Arch Biochem Biophys. 1984 Nov 1;234(2):591–602. doi: 10.1016/0003-9861(84)90309-6. [DOI] [PubMed] [Google Scholar]
  9. Chambers D. M., Peters J., Abbott C. M. The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1alpha, encoded by the Eef1a2 gene. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4463–4468. doi: 10.1073/pnas.95.8.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clemens M. J., Bommer U. A. Translational control: the cancer connection. Int J Biochem Cell Biol. 1999 Jan;31(1):1–23. doi: 10.1016/s1357-2725(98)00127-7. [DOI] [PubMed] [Google Scholar]
  11. Condeelis J. Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci. 1995 May;20(5):169–170. doi: 10.1016/s0968-0004(00)88998-7. [DOI] [PubMed] [Google Scholar]
  12. Das T., Mathur M., Gupta A. K., Janssen G. M., Banerjee A. K. RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 alphabetagamma for its activity. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1449–1454. doi: 10.1073/pnas.95.4.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ejiri S., Kawamura R., Katsumata T. Interactions among four subunits of elongation factor 1 from rice embryo. Biochim Biophys Acta. 1994 Apr 6;1217(3):266–272. doi: 10.1016/0167-4781(94)90285-2. [DOI] [PubMed] [Google Scholar]
  14. Estojak J., Brent R., Golemis E. A. Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol. 1995 Oct;15(10):5820–5829. doi: 10.1128/mcb.15.10.5820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fashena S. J., Serebriiskii I., Golemis E. A. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene. 2000 May 30;250(1-2):1–14. doi: 10.1016/s0378-1119(00)00182-7. [DOI] [PubMed] [Google Scholar]
  16. Golemis E. A., Brent R. Fused protein domains inhibit DNA binding by LexA. Mol Cell Biol. 1992 Jul;12(7):3006–3014. doi: 10.1128/mcb.12.7.3006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gromadski Kirill B., Wieden Hans-Joachim, Rodnina Marina V. Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu. Biochemistry. 2002 Jan 8;41(1):162–169. doi: 10.1021/bi015712w. [DOI] [PubMed] [Google Scholar]
  18. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jansen R. P. RNA-cytoskeletal associations. FASEB J. 1999 Mar;13(3):455–466. [PubMed] [Google Scholar]
  20. Janssen G. M., Möller W. Elongation factor 1 beta gamma from Artemia. Purification and properties of its subunits. Eur J Biochem. 1988 Jan 15;171(1-2):119–129. doi: 10.1111/j.1432-1033.1988.tb13766.x. [DOI] [PubMed] [Google Scholar]
  21. Janssen G. M., Möller W. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis. J Biol Chem. 1988 Feb 5;263(4):1773–1778. [PubMed] [Google Scholar]
  22. Janssen G. M., van Damme H. T., Kriek J., Amons R., Möller W. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? J Biol Chem. 1994 Dec 16;269(50):31410–31417. [PubMed] [Google Scholar]
  23. Jung M., Kondratyev A. D., Dritschilo A. Elongation factor 1 delta is enhanced following exposure to ionizing radiation. Cancer Res. 1994 May 15;54(10):2541–2543. [PubMed] [Google Scholar]
  24. Kahns S., Lund A., Kristensen P., Knudsen C. R., Clark B. F., Cavallius J., Merrick W. C. The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res. 1998 Apr 15;26(8):1884–1890. doi: 10.1093/nar/26.8.1884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kawaguchi Y., Matsumura T., Roizman B., Hirai K. Cellular elongation factor 1delta is modified in cells infected with representative alpha-, beta-, or gammaherpesviruses. J Virol. 1999 May;73(5):4456–4460. doi: 10.1128/jvi.73.5.4456-4460.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kinzy T. G., Woolford J. L., Jr Increased expression of Saccharomyces cerevisiae translation elongation factor 1 alpha bypasses the lethality of a TEF5 null allele encoding elongation factor 1 beta. Genetics. 1995 Oct;141(2):481–489. doi: 10.1093/genetics/141.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Knudsen C. R., Clark B. F., Degn B., Wiborg O. One-step purification of E. coli elongation factor Tu. Biochem Int. 1992 Oct;28(2):353–362. [PubMed] [Google Scholar]
  28. Knudsen S. M., Frydenberg J., Clark B. F., Leffers H. Tissue-dependent variation in the expression of elongation factor-1 alpha isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 alpha. Eur J Biochem. 1993 Aug 1;215(3):549–554. doi: 10.1111/j.1432-1033.1993.tb18064.x. [DOI] [PubMed] [Google Scholar]
  29. Kobayashi S., Kidou S., Ejiri S. Detection and characterization of glutathione S-transferase activity in rice EF-1betabeta'gamma and EF-1gamma expressed in Escherichia coli. Biochem Biophys Res Commun. 2001 Nov 2;288(3):509–514. doi: 10.1006/bbrc.2001.5799. [DOI] [PubMed] [Google Scholar]
  30. Koenigsberg M., Factor S., Cho S., Herskowitz A., Nitowsky H., Morecki R. Fetal Marfan syndrome: prenatal ultrasound diagnosis with pathological confirmation of skeletal and aortic lesions. Prenat Diagn. 1981 Oct;1(4):241–247. doi: 10.1002/pd.1970010403. [DOI] [PubMed] [Google Scholar]
  31. Kolettas E., Lymboura M., Khazaie K., Luqmani Y. Modulation of elongation factor-1 delta (EF-1 delta) expression by oncogenes in human epithelial cells. Anticancer Res. 1998 Jan-Feb;18(1A):385–392. [PubMed] [Google Scholar]
  32. Kozlov G., Ekiel I., Beglova N., Yee A., Dharamsi A., Engel A., Siddiqui N., Nong A., Gehring K. Rapid fold and structure determination of the archaeal translation elongation factor 1beta from Methanobacterium thermoautotrophicum. J Biomol NMR. 2000 Jul;17(3):187–194. doi: 10.1023/a:1008363304977. [DOI] [PubMed] [Google Scholar]
  33. Lee S., Ann D. K., Wang E. Cloning of human and mouse brain cDNAs coding for S1, the second member of the mammalian elongation factor-1 alpha gene family: analysis of a possible evolutionary pathway. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1371–1377. doi: 10.1006/bbrc.1994.2336. [DOI] [PubMed] [Google Scholar]
  34. Minella O., Mulner-Lorillon O., Bec G., Cormier P., Bellé R. Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1betagammadelta/ValRS) control the various functions of EF-1alpha. Biosci Rep. 1998 Jun;18(3):119–127. doi: 10.1023/a:1020140527930. [DOI] [PubMed] [Google Scholar]
  35. Minella O., Mulner-Lorillon O., Poulhe R., Bellé R., Cormier P. The guanine-nucleotide-exchange complex (EF-1 beta gamma delta) of elongation factor-1 contains two similar leucine-zipper proteins EF-1 delta, p34 encoded by EF-1 delta 1 and p36 encoded by EF-1 delta 2. Eur J Biochem. 1996 May 1;237(3):685–690. doi: 10.1111/j.1432-1033.1996.0685p.x. [DOI] [PubMed] [Google Scholar]
  36. Monnier A., Bellé R., Morales J., Cormier P., Boulben S., Mulner-Lorillon O. Evidence for regulation of protein synthesis at the elongation step by CDK1/cyclin B phosphorylation. Nucleic Acids Res. 2001 Apr 1;29(7):1453–1457. doi: 10.1093/nar/29.7.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Motorin Y. A., Wolfson A. D., Löhr D., Orlovsky A. F., Gladilin K. L. Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells. Eur J Biochem. 1991 Oct 15;201(2):325–331. doi: 10.1111/j.1432-1033.1991.tb16289.x. [DOI] [PubMed] [Google Scholar]
  38. Mulner-Lorillon O., Minella O., Cormier P., Capony J. P., Cavadore J. C., Morales J., Poulhe R., Bellé R. Elongation factor EF-1 delta, a new target for maturation-promoting factor in Xenopus oocytes. J Biol Chem. 1994 Aug 5;269(31):20201–20207. [PubMed] [Google Scholar]
  39. Negrutskii B. S., Shalak V. F., Kerjan P., El'skaya A. V., Mirande M. Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1alpha in the complex with EF-1H. J Biol Chem. 1999 Feb 19;274(8):4545–4550. doi: 10.1074/jbc.274.8.4545. [DOI] [PubMed] [Google Scholar]
  40. Petkova S. B., Huang H., Factor S. M., Pestell R. G., Bouzahzah B., Jelicks L. A., Weiss L. M., Douglas S. A., Wittner M., Tanowitz H. B. The role of endothelin in the pathogenesis of Chagas' disease. Int J Parasitol. 2001 May 1;31(5-6):499–511. doi: 10.1016/s0020-7519(01)00168-0. [DOI] [PubMed] [Google Scholar]
  41. Pizzuti A., Gennarelli M., Novelli G., Colosimo A., Lo Cicero S., Caskey C. T., Dallapiccola B. Human elongation factor EF-1 beta: cloning and characterization of the EF1 beta 5a gene and assignment of EF-1 beta isoforms to chromosomes 2,5,15 and X. Biochem Biophys Res Commun. 1993 Nov 30;197(1):154–162. doi: 10.1006/bbrc.1993.2454. [DOI] [PubMed] [Google Scholar]
  42. Pérez J. M., Kriek J., Dijk J., Canters G. W., Möller W. Expression, purification, and spectroscopic studies of the guanine nucleotide exchange domain of human elongation factor, EF-1beta. Protein Expr Purif. 1998 Jul;13(2):259–267. doi: 10.1006/prep.1998.0895. [DOI] [PubMed] [Google Scholar]
  43. Pérez J. M., Siegal G., Kriek J., Hård K., Dijk J., Canters G. W., Möller W. The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure. 1999 Feb 15;7(2):217–226. doi: 10.1016/s0969-2126(99)80027-6. [DOI] [PubMed] [Google Scholar]
  44. Sanders J., Brandsma M., Janssen G. M., Dijk J., Möller W. Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 beta gamma delta in the endoplasmic reticulum. J Cell Sci. 1996 May;109(Pt 5):1113–1117. doi: 10.1242/jcs.109.5.1113. [DOI] [PubMed] [Google Scholar]
  45. Sheu G. T., Traugh J. A. A structural model for elongation factor 1 (EF-1) and phosphorylation by protein kinase CKII. Mol Cell Biochem. 1999 Jan;191(1-2):181–186. [PubMed] [Google Scholar]
  46. Shirasawa T., Sakamoto K., Akashi T., Takahashi H., Kawashima A. Nucleotide sequence of rat elongation factor-1 alpha cDNA. Nucleic Acids Res. 1992 Feb 25;20(4):909–909. doi: 10.1093/nar/20.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Suda M., Fukui M., Sogabe Y., Sato K., Morimatsu A., Arai R., Motegi F., Miyakawa T., Mabuchi I., Hirata D. Overproduction of elongation factor 1alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast. Genes Cells. 1999 Sep;4(9):517–527. doi: 10.1046/j.1365-2443.1999.00279.x. [DOI] [PubMed] [Google Scholar]
  48. Tirode F., Malaguti C., Romero F., Attar R., Camonis J., Egly J. M. A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J Biol Chem. 1997 Sep 12;272(37):22995–22999. doi: 10.1074/jbc.272.37.22995. [DOI] [PubMed] [Google Scholar]
  49. Venema R. C., Peters H. I., Traugh J. A. Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem. 1991 Jul 5;266(19):12574–12580. [PubMed] [Google Scholar]
  50. Venema R. C., Peters H. I., Traugh J. A. Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities. J Biol Chem. 1991 Jun 25;266(18):11993–11998. [PubMed] [Google Scholar]
  51. Xiao H., Neuveut C., Benkirane M., Jeang K. T. Interaction of the second coding exon of Tat with human EF-1 delta delineates a mechanism for HIV-1-mediated shut-off of host mRNA translation. Biochem Biophys Res Commun. 1998 Mar 17;244(2):384–389. doi: 10.1006/bbrc.1998.8274. [DOI] [PubMed] [Google Scholar]
  52. Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., Korsmeyer S. J. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995 Jan 27;80(2):285–291. doi: 10.1016/0092-8674(95)90411-5. [DOI] [PubMed] [Google Scholar]
  53. van Damme H. T., Amons R., Karssies R., Timmers C. J., Janssen G. M., Möller W. Elongation factor 1 beta of artemia: localization of functional sites and homology to elongation factor 1 delta. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):241–247. doi: 10.1016/0167-4781(90)90174-z. [DOI] [PubMed] [Google Scholar]
  54. van Damme H., Amons R., Janssen G., Möller W. Mapping the functional domains of the eukaryotic elongation factor 1 beta gamma. Eur J Biochem. 1991 Apr 23;197(2):505–511. doi: 10.1111/j.1432-1033.1991.tb15938.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES