Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):947–955. doi: 10.1042/BJ20021848

Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids.

George McConnachie 1, Ian Pass 1, Steven M Walker 1, C Peter Downes 1
PMCID: PMC1223325  PMID: 12534371

Abstract

We investigated the kinetic behaviour and substrate specificity of PTEN (phosphatase and tensin homologue deleted on chromosome 10) using unilamellar vesicles containing substrate lipids in a background of phosphatidylcholine. PTEN displays the characteristics expected of an interfacial enzyme, since the rate of enzyme activity is dependent on the surface concentration of the substrate lipids used (mol fraction), as well as the bulk concentration. Surface-dilution analysis revealed the catalytic efficiency of PTEN for PtdIns(3,4,5) P (3) to be 200-fold greater than for either PtdIns(3,4) P (2) or PtdIns(3,5) P (2), and 1000-fold greater than for PtdIns3 P. The interfacial K (m) value of PTEN for PtdIns(3,4,5) P (3) was very low, reflecting the small proportions of this lipid that are present in cellular membranes. The catalytic-centre activity ( k (cat)) for PtdIns(3,4,5) P (3) was at least 200-fold greater than that for the water-soluble substrate Ins(1,3,4,5) P (4). The preference for lipid substrates may result from an interfacial activation of the enzyme, rather than processive catalysis of vesicular substrates. Moreover, both PtdIns(4,5) P (2) and univalent salts stimulated the activity of PTEN for PtdIns(3,4,5) P (3), but profoundly inhibited activity against Ins(1,3,4,5) P (4). The stimulatory effect of PtdIns(4,5) P (2) was greater in magnitude and more potent in comparison with other anionic phospholipid species. A mutation in the lipid-binding C2 domain (M-CBR3) that is biologically inactive did not alter overall catalytic efficiency in this model, but decreased the efficiency of the interfacial binding step, demonstrating its importance in the catalytic mechanism of PTEN.

Full Text

The Full Text of this article is available as a PDF (282.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
  2. Berg O. G., Yu B. Z., Rogers J., Jain M. K. Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants. Biochemistry. 1991 Jul 23;30(29):7283–7297. doi: 10.1021/bi00243a034. [DOI] [PubMed] [Google Scholar]
  3. Caffrey J. J., Darden T., Wenk M. R., Shears S. B. Expanding coincident signaling by PTEN through its inositol 1,3,4,5,6-pentakisphosphate 3-phosphatase activity. FEBS Lett. 2001 Jun 15;499(1-2):6–10. doi: 10.1016/s0014-5793(01)02500-5. [DOI] [PubMed] [Google Scholar]
  4. Carman G. M., Deems R. A., Dennis E. A. Lipid signaling enzymes and surface dilution kinetics. J Biol Chem. 1995 Aug 11;270(32):18711–18714. doi: 10.1074/jbc.270.32.18711. [DOI] [PubMed] [Google Scholar]
  5. Cho W. Membrane targeting by C1 and C2 domains. J Biol Chem. 2001 Jun 29;276(35):32407–32410. doi: 10.1074/jbc.R100007200. [DOI] [PubMed] [Google Scholar]
  6. Deems R. A., Eaton B. R., Dennis E. A. Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implications for the study of lipolytic enzymes. J Biol Chem. 1975 Dec 10;250(23):9013–9020. [PubMed] [Google Scholar]
  7. Georgescu M. M., Kirsch K. H., Kaloudis P., Yang H., Pavletich N. P., Hanafusa H. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res. 2000 Dec 15;60(24):7033–7038. [PubMed] [Google Scholar]
  8. Haas-Kogan D., Shalev N., Wong M., Mills G., Yount G., Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol. 1998 Oct 22;8(21):1195–1198. doi: 10.1016/s0960-9822(07)00493-9. [DOI] [PubMed] [Google Scholar]
  9. Hendrickson H. S., Dennis E. A. Analysis of the kinetics of phospholipid activation of cobra venom phospholipase A2. J Biol Chem. 1984 May 10;259(9):5740–5744. [PubMed] [Google Scholar]
  10. Iijima Miho, Devreotes Peter. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell. 2002 May 31;109(5):599–610. doi: 10.1016/s0092-8674(02)00745-6. [DOI] [PubMed] [Google Scholar]
  11. Jain M. K., Berg O. G. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim Biophys Acta. 1989 Apr 3;1002(2):127–156. doi: 10.1016/0005-2760(89)90281-6. [DOI] [PubMed] [Google Scholar]
  12. Jain M. K., DeHaas G. H., Marecek J. F., Ramirez F. The affinity of phospholipase A2 for the interface of the substrate and analogs. Biochim Biophys Acta. 1986 Sep 11;860(3):475–483. doi: 10.1016/0005-2736(86)90544-4. [DOI] [PubMed] [Google Scholar]
  13. Jain M. K., Gelb M. H., Rogers J., Berg O. G. Kinetic basis for interfacial catalysis by phospholipase A2. Methods Enzymol. 1995;249:567–614. doi: 10.1016/0076-6879(95)49049-3. [DOI] [PubMed] [Google Scholar]
  14. Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., Dixon J. E., Pandolfi P., Pavletich N. P. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999 Oct 29;99(3):323–334. doi: 10.1016/s0092-8674(00)81663-3. [DOI] [PubMed] [Google Scholar]
  15. Leslie N. R., Bennett D., Gray A., Pass I., Hoang-Xuan K., Downes C. P. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J. 2001 Jul 15;357(Pt 2):427–435. doi: 10.1042/0264-6021:3570427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leslie Nick R., Downes C. Peter. PTEN: The down side of PI 3-kinase signalling. Cell Signal. 2002 Apr;14(4):285–295. doi: 10.1016/s0898-6568(01)00234-0. [DOI] [PubMed] [Google Scholar]
  17. Maehama T., Dixon J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 29;273(22):13375–13378. doi: 10.1074/jbc.273.22.13375. [DOI] [PubMed] [Google Scholar]
  18. Maehama T., Taylor G. S., Dixon J. E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–279. doi: 10.1146/annurev.biochem.70.1.247. [DOI] [PubMed] [Google Scholar]
  19. Myers M. P., Pass I., Batty I. H., Van der Kaay J., Stolarov J. P., Hemmings B. A., Wigler M. H., Downes C. P., Tonks N. K. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13513–13518. doi: 10.1073/pnas.95.23.13513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nalefski E. A., Falke J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 1996 Dec;5(12):2375–2390. doi: 10.1002/pro.5560051201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nickels J. T., Jr, Buxeda R. J., Carman G. M. Purification, characterization, and kinetic analysis of a 55-kDa form of phosphatidylinositol 4-kinase from Saccharomyces cerevisiae. J Biol Chem. 1992 Aug 15;267(23):16297–16304. [PubMed] [Google Scholar]
  22. Rizo J., Südhof T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998 Jun 26;273(26):15879–15882. doi: 10.1074/jbc.273.26.15879. [DOI] [PubMed] [Google Scholar]
  23. Simpson L., Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res. 2001 Mar 10;264(1):29–41. doi: 10.1006/excr.2000.5130. [DOI] [PubMed] [Google Scholar]
  24. Stambolic V., Suzuki A., de la Pompa J. L., Brothers G. M., Mirtsos C., Sasaki T., Ruland J., Penninger J. M., Siderovski D. P., Mak T. W. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998 Oct 2;95(1):29–39. doi: 10.1016/s0092-8674(00)81780-8. [DOI] [PubMed] [Google Scholar]
  25. Sun H., Lesche R., Li D. M., Liliental J., Zhang H., Gao J., Gavrilova N., Mueller B., Liu X., Wu H. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6199–6204. doi: 10.1073/pnas.96.11.6199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Waite Kristin A., Eng Charis. Protean PTEN: form and function. Am J Hum Genet. 2002 Mar 1;70(4):829–844. doi: 10.1086/340026. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES