Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):1–20. doi: 10.1042/BJ20030407

Principles of interleukin (IL)-6-type cytokine signalling and its regulation.

Peter C Heinrich 1, Iris Behrmann 1, Serge Haan 1, Heike M Hermanns 1, Gerhard Müller-Newen 1, Fred Schaper 1
PMCID: PMC1223585  PMID: 12773095

Abstract

The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.

Full Text

The Full Text of this article is available as a PDF (466.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Hirai M., Mizuno K., Higashi N., Sekimoto T., Miki T., Hirano T., Nakajima K. The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser727 through an H7-sensitive kinase pathway. Oncogene. 2001 Jun 14;20(27):3464–3474. doi: 10.1038/sj.onc.1204461. [DOI] [PubMed] [Google Scholar]
  2. Abramovich C., Yakobson B., Chebath J., Revel M. A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 1997 Jan 15;16(2):260–266. doi: 10.1093/emboj/16.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahmed S. T., Ivashkiv L. B. Inhibition of IL-6 and IL-10 signaling and Stat activation by inflammatory and stress pathways. J Immunol. 2000 Nov 1;165(9):5227–5237. doi: 10.4049/jimmunol.165.9.5227. [DOI] [PubMed] [Google Scholar]
  4. Andrews Ryan P., Ericksen Mark B., Cunningham Christie M., Daines Michael O., Hershey Gurjit K. Khurana. Analysis of the life cycle of stat6. Continuous cycling of STAT6 is required for IL-4 signaling. J Biol Chem. 2002 Jul 16;277(39):36563–36569. doi: 10.1074/jbc.M200986200. [DOI] [PubMed] [Google Scholar]
  5. Andus T., Geiger T., Hirano T., Kishimoto T., Heinrich P. C. Action of recombinant human interleukin 6, interleukin 1 beta and tumor necrosis factor alpha on the mRNA induction of acute-phase proteins. Eur J Immunol. 1988 May;18(5):739–746. doi: 10.1002/eji.1830180513. [DOI] [PubMed] [Google Scholar]
  6. Anhuf D., Weissenbach M., Schmitz J., Sobota R., Hermanns H. M., Radtke S., Linnemann S., Behrmann I., Heinrich P. C., Schaper F. Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation. J Immunol. 2000 Sep 1;165(5):2535–2543. doi: 10.4049/jimmunol.165.5.2535. [DOI] [PubMed] [Google Scholar]
  7. Autissier P., De Vos J., Liautard J., Tupitsyn N., Jacquet C., Chavdia N., Klein B., Brochier J., Gaillard J. P. Dimerization and activation of the common transducing chain (gp130) of the cytokines of the IL-6 family by mAb. Int Immunol. 1998 Dec;10(12):1881–1889. doi: 10.1093/intimm/10.12.1881. [DOI] [PubMed] [Google Scholar]
  8. Ballinger M. D., Wells J. A. Will any dimer do? Nat Struct Biol. 1998 Nov;5(11):938–940. doi: 10.1038/2911. [DOI] [PubMed] [Google Scholar]
  9. Bank U., Küpper B., Reinhold D., Hoffmann T., Ansorge S. Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett. 1999 Nov 19;461(3):235–240. doi: 10.1016/s0014-5793(99)01466-0. [DOI] [PubMed] [Google Scholar]
  10. Becker S., Groner B., Müller C. W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998 Jul 9;394(6689):145–151. doi: 10.1038/28101. [DOI] [PubMed] [Google Scholar]
  11. Begitt A., Meyer T., van Rossum M., Vinkemeier U. Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10418–10423. doi: 10.1073/pnas.190318397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Beuvink I., Hess D., Flotow H., Hofsteenge J., Groner B., Hynes N. E. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity. J Biol Chem. 2000 Apr 7;275(14):10247–10255. doi: 10.1074/jbc.275.14.10247. [DOI] [PubMed] [Google Scholar]
  13. Bild Andrea H., Turkson James, Jove Richard. Cytoplasmic transport of Stat3 by receptor-mediated endocytosis. EMBO J. 2002 Jul 1;21(13):3255–3263. doi: 10.1093/emboj/cdf351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bjorbak C., Lavery H. J., Bates S. H., Olson R. K., Davis S. M., Flier J. S., Myers M. G., Jr SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000 Dec 22;275(51):40649–40657. doi: 10.1074/jbc.M007577200. [DOI] [PubMed] [Google Scholar]
  15. Blanchard F., Duplomb L., Wang Y., Robledo O., Kinzie E., Pitard V., Godard A., Jacques Y., Baumann H. Stimulation of leukemia inhibitory factor receptor degradation by extracellular signal-regulated kinase. J Biol Chem. 2000 Sep 15;275(37):28793–28801. doi: 10.1074/jbc.M003986200. [DOI] [PubMed] [Google Scholar]
  16. Blanchard F., Wang Y., Kinzie E., Duplomb L., Godard A., Baumann H. Oncostatin M regulates the synthesis and turnover of gp130, leukemia inhibitory factor receptor alpha, and oncostatin M receptor beta by distinct mechanisms. J Biol Chem. 2001 Oct 15;276(50):47038–47045. doi: 10.1074/jbc.M107971200. [DOI] [PubMed] [Google Scholar]
  17. Bode J. G., Fischer R., Häussinger D., Graeve L., Heinrich P. C., Schaper F. The inhibitory effect of IL-1 beta on IL-6-induced alpha 2-macroglobulin expression is due to activation of NF-kappa B. J Immunol. 2001 Aug 1;167(3):1469–1481. doi: 10.4049/jimmunol.167.3.1469. [DOI] [PubMed] [Google Scholar]
  18. Bode J. G., Ludwig S., Freitas C. A., Schaper F., Ruhl M., Melmed S., Heinrich P. C., Häussinger D. The MKK6/p38 mitogen-activated protein kinase pathway is capable of inducing SOCS3 gene expression and inhibits IL-6-induced transcription. Biol Chem. 2001 Oct;382(10):1447–1453. doi: 10.1515/BC.2001.178. [DOI] [PubMed] [Google Scholar]
  19. Bode J. G., Nimmesgern A., Schmitz J., Schaper F., Schmitt M., Frisch W., Häussinger D., Heinrich P. C., Graeve L. LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett. 1999 Dec 17;463(3):365–370. doi: 10.1016/s0014-5793(99)01662-2. [DOI] [PubMed] [Google Scholar]
  20. Boulton T. G., Stahl N., Yancopoulos G. D. Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J Biol Chem. 1994 Apr 15;269(15):11648–11655. [PubMed] [Google Scholar]
  21. Boulton T. G., Zhong Z., Wen Z., Darnell J. E., Jr, Stahl N., Yancopoulos G. D. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6915–6919. doi: 10.1073/pnas.92.15.6915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bousquet C., Susini C., Melmed S. Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J Clin Invest. 1999 Nov;104(9):1277–1285. doi: 10.1172/JCI7924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bravo J., Heath J. K. Receptor recognition by gp130 cytokines. EMBO J. 2000 Jun 1;19(11):2399–2411. doi: 10.1093/emboj/19.11.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Brivanlou Ali H., Darnell James E., Jr Signal transduction and the control of gene expression. Science. 2002 Feb 1;295(5556):813–818. doi: 10.1126/science.1066355. [DOI] [PubMed] [Google Scholar]
  25. Bromberg J. F., Wrzeszczynska M. H., Devgan G., Zhao Y., Pestell R. G., Albanese C., Darnell J. E., Jr Stat3 as an oncogene. Cell. 1999 Aug 6;98(3):295–303. doi: 10.1016/s0092-8674(00)81959-5. [DOI] [PubMed] [Google Scholar]
  26. Brown R. T., Ades I. Z., Nordan R. P. An acute phase response factor/NF-kappa B site downstream of the junB gene that mediates responsiveness to interleukin-6 in a murine plasmacytoma. J Biol Chem. 1995 Dec 29;270(52):31129–31135. doi: 10.1074/jbc.270.52.31129. [DOI] [PubMed] [Google Scholar]
  27. Burfoot M. S., Rogers N. C., Watling D., Smith J. M., Pons S., Paonessaw G., Pellegrini S., White M. F., Kerr I. M. Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J Biol Chem. 1997 Sep 26;272(39):24183–24190. doi: 10.1074/jbc.272.39.24183. [DOI] [PubMed] [Google Scholar]
  28. Cacalano N. A., Sanden D., Johnston J. A. Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol. 2001 May;3(5):460–465. doi: 10.1038/35074525. [DOI] [PubMed] [Google Scholar]
  29. Caldenhoven E., van Dijk T. B., Solari R., Armstrong J., Raaijmakers J. A., Lammers J. W., Koenderman L., de Groot R. P. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem. 1996 May 31;271(22):13221–13227. doi: 10.1074/jbc.271.22.13221. [DOI] [PubMed] [Google Scholar]
  30. Campos S. P., Baumann H. Insulin is a prominent modulator of the cytokine-stimulated expression of acute-phase plasma protein genes. Mol Cell Biol. 1992 Apr;12(4):1789–1797. doi: 10.1128/mcb.12.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Chakraborty A., White S. M., Schaefer T. S., Ball E. D., Dyer K. F., Tweardy D. J. Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. Blood. 1996 Oct 1;88(7):2442–2449. [PubMed] [Google Scholar]
  32. Chan F. K., Chun H. J., Zheng L., Siegel R. M., Bui K. L., Lenardo M. J. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000 Jun 30;288(5475):2351–2354. doi: 10.1126/science.288.5475.2351. [DOI] [PubMed] [Google Scholar]
  33. Chatterjee-Kishore M., Wright K. L., Ting J. P., Stark G. R. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J. 2000 Aug 1;19(15):4111–4122. doi: 10.1093/emboj/19.15.4111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chen C. Y., Del Gatto-Konczak F., Wu Z., Karin M. Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science. 1998 Jun 19;280(5371):1945–1949. doi: 10.1126/science.280.5371.1945. [DOI] [PubMed] [Google Scholar]
  35. Chen R. H., Chang M. C., Su Y. H., Tsai Y. T., Kuo M. L. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem. 1999 Aug 13;274(33):23013–23019. doi: 10.1074/jbc.274.33.23013. [DOI] [PubMed] [Google Scholar]
  36. Chen X. Peter, Losman Julie A., Cowan Simone, Donahue Elizabeth, Fay Scott, Vuong Bao Q., Nawijn Martijn C., Capece Danielle, Cohan Victoria L., Rothman Paul. Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2175–2180. doi: 10.1073/pnas.042035699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Chen X., Vinkemeier U., Zhao Y., Jeruzalmi D., Darnell J. E., Jr, Kuriyan J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998 May 29;93(5):827–839. doi: 10.1016/s0092-8674(00)81443-9. [DOI] [PubMed] [Google Scholar]
  38. Chow D., He X., Snow A. L., Rose-John S., Garcia K. C. Structure of an extracellular gp130 cytokine receptor signaling complex. Science. 2001 Mar 16;291(5511):2150–2155. doi: 10.1126/science.1058308. [DOI] [PubMed] [Google Scholar]
  39. Chung C. D., Liao J., Liu B., Rao X., Jay P., Berta P., Shuai K. Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997 Dec 5;278(5344):1803–1805. doi: 10.1126/science.278.5344.1803. [DOI] [PubMed] [Google Scholar]
  40. Chung J., Uchida E., Grammer T. C., Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997 Nov;17(11):6508–6516. doi: 10.1128/mcb.17.11.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Cohney S. J., Sanden D., Cacalano N. A., Yoshimura A., Mui A., Migone T. S., Johnston J. A. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol. 1999 Jul;19(7):4980–4988. doi: 10.1128/mcb.19.7.4980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Constantinescu S. N., Huang L. J., Nam H., Lodish H. F. The erythropoietin receptor cytosolic juxtamembrane domain contains an essential, precisely oriented, hydrophobic motif. Mol Cell. 2001 Feb;7(2):377–385. doi: 10.1016/s1097-2765(01)00185-x. [DOI] [PubMed] [Google Scholar]
  43. Cunnick Jess M., Meng Songshu, Ren Yuan, Desponts Caroline, Wang Hong-Gang, Djeu Julie Y., Wu Jie. Regulation of the mitogen-activated protein kinase signaling pathway by SHP2. J Biol Chem. 2002 Jan 4;277(11):9498–9504. doi: 10.1074/jbc.M110547200. [DOI] [PubMed] [Google Scholar]
  44. De Sepulveda P., Ilangumaran S., Rottapel R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J Biol Chem. 2000 May 12;275(19):14005–14008. doi: 10.1074/jbc.c000106200. [DOI] [PubMed] [Google Scholar]
  45. De Souza David, Fabri Louis J., Nash Andrew, Hilton Douglas J., Nicola Nicos A., Baca Manuel. SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry. 2002 Jul 23;41(29):9229–9236. doi: 10.1021/bi0259507. [DOI] [PubMed] [Google Scholar]
  46. Deller M. C., Hudson K. R., Ikemizu S., Bravo J., Jones E. Y., Heath J. K. Crystal structure and functional dissection of the cytostatic cytokine oncostatin M. Structure. 2000 Aug 15;8(8):863–874. doi: 10.1016/s0969-2126(00)00176-3. [DOI] [PubMed] [Google Scholar]
  47. Dittrich E., Haft C. R., Muys L., Heinrich P. C., Graeve L. A di-leucine motif and an upstream serine in the interleukin-6 (IL-6) signal transducer gp130 mediate ligand-induced endocytosis and down-regulation of the IL-6 receptor. J Biol Chem. 1996 Mar 8;271(10):5487–5494. doi: 10.1074/jbc.271.10.5487. [DOI] [PubMed] [Google Scholar]
  48. Elson G. C., Lelièvre E., Guillet C., Chevalier S., Plun-Favreau H., Froger J., Suard I., de Coignac A. B., Delneste Y., Bonnefoy J. Y. CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci. 2000 Sep;3(9):867–872. doi: 10.1038/78765. [DOI] [PubMed] [Google Scholar]
  49. Endo T. A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matsumoto A., Tanimura S., Ohtsubo M., Misawa H. A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997 Jun 26;387(6636):921–924. doi: 10.1038/43213. [DOI] [PubMed] [Google Scholar]
  50. Eyckerman S., Broekaert D., Verhee A., Vandekerckhove J., Tavernier J. Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett. 2000 Dec 1;486(1):33–37. doi: 10.1016/s0014-5793(00)02205-5. [DOI] [PubMed] [Google Scholar]
  51. Fagerlund Riku, Mélen Krister, Kinnunen Leena, Julkunen Ilkka. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem. 2002 Jun 4;277(33):30072–30078. doi: 10.1074/jbc.M202943200. [DOI] [PubMed] [Google Scholar]
  52. Falco Giulia De, Neri Luca Maria, Falco Maria De, Bellan Cristiana, Yu Zailin, Luca Antonio De, Leoncini Lorenzo, Giordano Antonio. Cdk9, a member of the cdc2-like family of kinases, binds to gp130, the receptor of the IL-6 family of cytokines. Oncogene. 2002 Oct 24;21(49):7464–7470. doi: 10.1038/sj.onc.1205967. [DOI] [PubMed] [Google Scholar]
  53. Frantsve J., Schwaller J., Sternberg D. W., Kutok J., Gilliland D. G. Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol. 2001 May;21(10):3547–3557. doi: 10.1128/MCB.21.10.3547-3557.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Fu X. Y., Zhang J. J. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell. 1993 Sep 24;74(6):1135–1145. doi: 10.1016/0092-8674(93)90734-8. [DOI] [PubMed] [Google Scholar]
  55. Fujitani Y., Hibi M., Fukada T., Takahashi-Tezuka M., Yoshida H., Yamaguchi T., Sugiyama K., Yamanaka Y., Nakajima K., Hirano T. An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene. 1997 Feb 20;14(7):751–761. doi: 10.1038/sj.onc.1200907. [DOI] [PubMed] [Google Scholar]
  56. Fukada T., Hibi M., Yamanaka Y., Takahashi-Tezuka M., Fujitani Y., Yamaguchi T., Nakajima K., Hirano T. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity. 1996 Nov;5(5):449–460. doi: 10.1016/s1074-7613(00)80501-4. [DOI] [PubMed] [Google Scholar]
  57. Gauzzi M. C., Barbieri G., Richter M. F., Uzé G., Ling L., Fellous M., Pellegrini S. The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11839–11844. doi: 10.1073/pnas.94.22.11839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Gerhartz C., Dittrich E., Stoyan T., Rose-John S., Yasukawa K., Heinrich P. C., Graeve L. Biosynthesis and half-life of the interleukin-6 receptor and its signal transducer gp130. Eur J Biochem. 1994 Jul 1;223(1):265–274. doi: 10.1111/j.1432-1033.1994.tb18991.x. [DOI] [PubMed] [Google Scholar]
  59. Gerhartz C., Heesel B., Sasse J., Hemmann U., Landgraf C., Schneider-Mergener J., Horn F., Heinrich P. C., Graeve L. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem. 1996 May 31;271(22):12991–12998. doi: 10.1074/jbc.271.22.12991. [DOI] [PubMed] [Google Scholar]
  60. Gibson R. M., Schiemann W. P., Prichard L. B., Reno J. M., Ericsson L. H., Nathanson N. M. Phosphorylation of human gp130 at Ser-782 adjacent to the Di-leucine internalization motif. Effects on expression and signaling. J Biol Chem. 2000 Jul 21;275(29):22574–22582. doi: 10.1074/jbc.M907658199. [DOI] [PubMed] [Google Scholar]
  61. Greenlund A. C., Farrar M. A., Viviano B. L., Schreiber R. D. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J. 1994 Apr 1;13(7):1591–1600. doi: 10.1002/j.1460-2075.1994.tb06422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Greiser Jens S., Stross Claudia, Heinrich Peter C., Behrmann Iris, Hermanns Heike M. Orientational constraints of the gp130 intracellular juxtamembrane domain for signaling. J Biol Chem. 2002 May 14;277(30):26959–26965. doi: 10.1074/jbc.M204113200. [DOI] [PubMed] [Google Scholar]
  63. Gross M., Liu B., Tan J., French F. S., Carey M., Shuai K. Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene. 2001 Jun 28;20(29):3880–3887. doi: 10.1038/sj.onc.1204489. [DOI] [PubMed] [Google Scholar]
  64. Gu H., Pratt J. C., Burakoff S. J., Neel B. G. Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell. 1998 Dec;2(6):729–740. doi: 10.1016/s1097-2765(00)80288-9. [DOI] [PubMed] [Google Scholar]
  65. Gunaje J. J., Bhat G. J. Involvement of tyrosine phosphatase PTP1D in the inhibition of interleukin-6-induced Stat3 signaling by alpha-thrombin. Biochem Biophys Res Commun. 2001 Oct 19;288(1):252–257. doi: 10.1006/bbrc.2001.5759. [DOI] [PubMed] [Google Scholar]
  66. Guschin D., Rogers N., Briscoe J., Witthuhn B., Watling D., Horn F., Pellegrini S., Yasukawa K., Heinrich P., Stark G. R. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 1995 Apr 3;14(7):1421–1429. doi: 10.1002/j.1460-2075.1995.tb07128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Haan C., Hermanns H. M., Heinrich P. C., Behrmann I. A single amino acid substitution (Trp(666)-->Ala) in the interbox1/2 region of the interleukin-6 signal transducer gp130 abrogates binding of JAK1, and dominantly impairs signal transduction. Biochem J. 2000 Jul 1;349(Pt 1):261–266. doi: 10.1042/0264-6021:3490261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Haan C., Is'harc H., Hermanns H. M., Schmitz-Van De Leur H., Kerr I. M., Heinrich P. C., Grötzinger J., Behrmann I. Mapping of a region within the N terminus of Jak1 involved in cytokine receptor interaction. J Biol Chem. 2001 Jul 23;276(40):37451–37458. doi: 10.1074/jbc.M106135200. [DOI] [PubMed] [Google Scholar]
  69. Haan Claude, Heinrich Peter C., Behrmann Iris. Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem J. 2002 Jan 1;361(Pt 1):105–111. doi: 10.1042/0264-6021:3610105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Haan S., Hemmann U., Hassiepen U., Schaper F., Schneider-Mergener J., Wollmer A., Heinrich P. C., Grötzinger J. Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem. 1999 Jan 15;274(3):1342–1348. doi: 10.1074/jbc.274.3.1342. [DOI] [PubMed] [Google Scholar]
  71. Haan S., Kortylewski M., Behrmann I., Müller-Esterl W., Heinrich P. C., Schaper F. Cytoplasmic STAT proteins associate prior to activation. Biochem J. 2000 Feb 1;345(Pt 3):417–421. [PMC free article] [PubMed] [Google Scholar]
  72. Hamada K., Shimizu T., Matsui T., Tsukita S., Hakoshima T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 2000 Sep 1;19(17):4449–4462. doi: 10.1093/emboj/19.17.4449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Hammacher A., Richardson R. T., Layton J. E., Smith D. K., Angus L. J., Hilton D. J., Nicola N. A., Wijdenes J., Simpson R. J. The immunoglobulin-like module of gp130 is required for signaling by interleukin-6, but not by leukemia inhibitory factor. J Biol Chem. 1998 Aug 28;273(35):22701–22707. doi: 10.1074/jbc.273.35.22701. [DOI] [PubMed] [Google Scholar]
  74. Hammacher A., Wijdenes J., Hilton D. J., Nicola N. A., Simpson R. J., Layton J. E. Ligand-specific utilization of the extracellular membrane-proximal region of the gp130-related signalling receptors. Biochem J. 2000 Jan 1;345(Pt 1):25–32. [PMC free article] [PubMed] [Google Scholar]
  75. Han B. G., Nunomura W., Takakuwa Y., Mohandas N., Jap B. K. Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat Struct Biol. 2000 Oct;7(10):871–875. doi: 10.1038/82819. [DOI] [PubMed] [Google Scholar]
  76. Hanada T., Yoshida T., Kinjyo I., Minoguchi S., Yasukawa H., Kato S., Mimata H., Nomura Y., Seki Y., Kubo M. A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box. J Biol Chem. 2001 Aug 24;276(44):40746–40754. doi: 10.1074/jbc.M106139200. [DOI] [PubMed] [Google Scholar]
  77. Haq Rizwan, Halupa Adrienne, Beattie Bryan K., Mason Jacqueline M., Zanke Brent W., Barber Dwayne L. Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J Biol Chem. 2002 Mar 1;277(19):17359–17366. doi: 10.1074/jbc.M201842200. [DOI] [PubMed] [Google Scholar]
  78. Haspel R. L., Darnell J. E., Jr A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10188–10193. doi: 10.1073/pnas.96.18.10188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Haspel R. L., Salditt-Georgieff M., Darnell J. E., Jr The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J. 1996 Nov 15;15(22):6262–6268. [PMC free article] [PubMed] [Google Scholar]
  80. Heim M. H., Kerr I. M., Stark G. R., Darnell J. E., Jr Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science. 1995 Mar 3;267(5202):1347–1349. doi: 10.1126/science.7871432. [DOI] [PubMed] [Google Scholar]
  81. Heinrich P. C., Behrmann I., Müller-Newen G., Schaper F., Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998 Sep 1;334(Pt 2):297–314. doi: 10.1042/bj3340297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Hemmann U., Gerhartz C., Heesel B., Sasse J., Kurapkat G., Grötzinger J., Wollmer A., Zhong Z., Darnell J. E., Jr, Graeve L. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J Biol Chem. 1996 May 31;271(22):12999–13007. doi: 10.1074/jbc.271.22.12999. [DOI] [PubMed] [Google Scholar]
  83. Hermanns H. M., Radtke S., Haan C., Schmitz-Van de Leur H., Tavernier J., Heinrich P. C., Behrmann I. Contributions of leukemia inhibitory factor receptor and oncostatin M receptor to signal transduction in heterodimeric complexes with glycoprotein 130. J Immunol. 1999 Dec 15;163(12):6651–6658. [PubMed] [Google Scholar]
  84. Hermanns H. M., Radtke S., Schaper F., Heinrich P. C., Behrmann I. Non-redundant signal transduction of interleukin-6-type cytokines. The adapter protein Shc is specifically recruited to rhe oncostatin M receptor. J Biol Chem. 2000 Dec 29;275(52):40742–40748. doi: 10.1074/jbc.M005408200. [DOI] [PubMed] [Google Scholar]
  85. Herrington J., Rui L., Luo G., Yu-Lee L. Y., Carter-Su C. A functional DNA binding domain is required for growth hormone-induced nuclear accumulation of Stat5B. J Biol Chem. 1999 Feb 19;274(8):5138–5145. doi: 10.1074/jbc.274.8.5138. [DOI] [PubMed] [Google Scholar]
  86. Hideshima T., Nakamura N., Chauhan D., Anderson K. C. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001 Sep 20;20(42):5991–6000. doi: 10.1038/sj.onc.1204833. [DOI] [PubMed] [Google Scholar]
  87. Hiroi Miki, Ohmori Yoshihiro. The transcriptional coactivator CREB-binding protein cooperates with STAT1 and NF-kappa B for synergistic transcriptional activation of the CXC ligand 9/monokine induced by interferon-gamma gene. J Biol Chem. 2002 Oct 25;278(1):651–660. doi: 10.1074/jbc.M204544200. [DOI] [PubMed] [Google Scholar]
  88. Hof P., Pluskey S., Dhe-Paganon S., Eck M. J., Shoelson S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998 Feb 20;92(4):441–450. doi: 10.1016/s0092-8674(00)80938-1. [DOI] [PubMed] [Google Scholar]
  89. Hoischen S. H., Vollmer P., März P., Ozbek S., Götze K. S., Peschel C., Jostock T., Geib T., Müllberg J., Mechtersheimer S. Human herpes virus 8 interleukin-6 homologue triggers gp130 on neuronal and hematopoietic cells. Eur J Biochem. 2000 Jun;267(12):3604–3612. doi: 10.1046/j.1432-1327.2000.01389.x. [DOI] [PubMed] [Google Scholar]
  90. Holgado-Madruga M., Emlet D. R., Moscatello D. K., Godwin A. K., Wong A. J. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature. 1996 Feb 8;379(6565):560–564. doi: 10.1038/379560a0. [DOI] [PubMed] [Google Scholar]
  91. Horvai A. E., Xu L., Korzus E., Brard G., Kalafus D., Mullen T. M., Rose D. W., Rosenfeld M. G., Glass C. K. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1074–1079. doi: 10.1073/pnas.94.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Hsu Jung-hsin, Shi Yijiang, Hu Liping, Fisher Myrna, Franke Thomas F., Lichtenstein Alan. Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene. 2002 Feb 21;21(9):1391–1400. doi: 10.1038/sj.onc.1205194. [DOI] [PubMed] [Google Scholar]
  93. Huang L. J., Constantinescu S. N., Lodish H. F. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell. 2001 Dec;8(6):1327–1338. doi: 10.1016/s1097-2765(01)00401-4. [DOI] [PubMed] [Google Scholar]
  94. Hörtner Michael, Nielsch Ulrich, Mayr Lorenz M., Heinrich Peter C., Haan Serge. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Eur J Biochem. 2002 May;269(10):2516–2526. doi: 10.1046/j.1432-1033.2002.02916.x. [DOI] [PubMed] [Google Scholar]
  95. Hörtner Michael, Nielsch Ulrich, Mayr Lorenz M., Johnston James A., Heinrich Peter C., Haan Serge. Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction. J Immunol. 2002 Aug 1;169(3):1219–1227. doi: 10.4049/jimmunol.169.3.1219. [DOI] [PubMed] [Google Scholar]
  96. Irie-Sasaki J., Sasaki T., Matsumoto W., Opavsky A., Cheng M., Welstead G., Griffiths E., Krawczyk C., Richardson C. D., Aitken K. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature. 2001 Jan 18;409(6818):349–354. doi: 10.1038/35053086. [DOI] [PubMed] [Google Scholar]
  97. Itoh M., Yoshida Y., Nishida K., Narimatsu M., Hibi M., Hirano T. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol. 2000 May;20(10):3695–3704. doi: 10.1128/mcb.20.10.3695-3704.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Jackson P. K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev. 2001 Dec 1;15(23):3053–3058. doi: 10.1101/gad.955501. [DOI] [PubMed] [Google Scholar]
  99. Jain N., Zhang T., Kee W. H., Li W., Cao X. Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem. 1999 Aug 20;274(34):24392–24400. doi: 10.1074/jbc.274.34.24392. [DOI] [PubMed] [Google Scholar]
  100. Jee S. H., Chiu H. C., Tsai T. F., Tsai W. L., Liao Y. H., Chu C. Y., Kuo M. L. The phosphotidyl inositol 3-kinase/Akt signal pathway is involved in interleukin-6-mediated Mcl-1 upregulation and anti-apoptosis activity in basal cell carcinoma cells. J Invest Dermatol. 2002 Nov;119(5):1121–1127. doi: 10.1046/j.1523-1747.2002.19503.x. [DOI] [PubMed] [Google Scholar]
  101. Jiang G., Hunter T. Receptor signaling: when dimerization is not enough. 1999 Jul 29-Aug 12Curr Biol. 9(15):R568–R571. doi: 10.1016/s0960-9822(99)80357-1. [DOI] [PubMed] [Google Scholar]
  102. Kaleeba J. A., Bergquam E. P., Wong S. W. A rhesus macaque rhadinovirus related to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 encodes a functional homologue of interleukin-6. J Virol. 1999 Jul;73(7):6177–6181. doi: 10.1128/jvi.73.7.6177-6181.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Kamizono S., Hanada T., Yasukawa H., Minoguchi S., Kato R., Minoguchi M., Hattori K., Hatakeyama S., Yada M., Morita S. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem. 2001 Jan 19;276(16):12530–12538. doi: 10.1074/jbc.M010074200. [DOI] [PubMed] [Google Scholar]
  104. Kamura T., Burian D., Yan Q., Schmidt S. L., Lane W. S., Querido E., Branton P. E., Shilatifard A., Conaway R. C., Conaway J. W. Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J Biol Chem. 2001 May 30;276(32):29748–29753. doi: 10.1074/jbc.M103093200. [DOI] [PubMed] [Google Scholar]
  105. Kamura T., Sato S., Haque D., Liu L., Kaelin W. G., Jr, Conaway R. C., Conaway J. W. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 1998 Dec 15;12(24):3872–3881. doi: 10.1101/gad.12.24.3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Kaptein A., Paillard V., Saunders M. Dominant negative stat3 mutant inhibits interleukin-6-induced Jak-STAT signal transduction. J Biol Chem. 1996 Mar 15;271(11):5961–5964. doi: 10.1074/jbc.271.11.5961. [DOI] [PubMed] [Google Scholar]
  107. Kim H., Hawley T. S., Hawley R. G., Baumann H. Protein tyrosine phosphatase 2 (SHP-2) moderates signaling by gp130 but is not required for the induction of acute-phase plasma protein genes in hepatic cells. Mol Cell Biol. 1998 Mar;18(3):1525–1533. doi: 10.1128/mcb.18.3.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kishimoto T., Akira S., Narazaki M., Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995 Aug 15;86(4):1243–1254. [PubMed] [Google Scholar]
  109. Kordula T., Travis J. The role of Stat and C/EBP transcription factors in the synergistic activation of rat serine protease inhibitor-3 gene by interleukin-6 and dexamethasone. Biochem J. 1996 Feb 1;313(Pt 3):1019–1027. doi: 10.1042/bj3131019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Kortylewski Marcin, Feld Florian, Krüger Klaus-Dieter, Bahrenberg Gregor, Roth Richard A., Joost Hans-Georg, Heinrich Peter C., Behrmann Iris, Barthel Andreas. Akt modulates STAT3-mediated gene expression through a FKHR (FOXO1a)-dependent mechanism. J Biol Chem. 2002 Nov 26;278(7):5242–5249. doi: 10.1074/jbc.M205403200. [DOI] [PubMed] [Google Scholar]
  111. Korzus E., Torchia J., Rose D. W., Xu L., Kurokawa R., McInerney E. M., Mullen T. M., Glass C. K., Rosenfeld M. G. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science. 1998 Jan 30;279(5351):703–707. doi: 10.1126/science.279.5351.703. [DOI] [PubMed] [Google Scholar]
  112. Koshelnick Y., Ehart M., Hufnagl P., Heinrich P. C., Binder B. R. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem. 1997 Nov 7;272(45):28563–28567. doi: 10.1074/jbc.272.45.28563. [DOI] [PubMed] [Google Scholar]
  113. Kotaja Noora, Karvonen Ulla, Jänne Olli A., Palvimo Jorma J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol. 2002 Jul;22(14):5222–5234. doi: 10.1128/MCB.22.14.5222-5234.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Kumar A., Commane M., Flickinger T. W., Horvath C. M., Stark G. R. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science. 1997 Nov 28;278(5343):1630–1632. doi: 10.1126/science.278.5343.1630. [DOI] [PubMed] [Google Scholar]
  115. Kunz D., Zimmermann R., Heisig M., Heinrich P. C. Identification of the promoter sequences involved in the interleukin-6 dependent expression of the rat alpha 2-macroglobulin gene. Nucleic Acids Res. 1989 Feb 11;17(3):1121–1138. doi: 10.1093/nar/17.3.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Kuropatwinski K. K., De Imus C., Gearing D., Baumann H., Mosley B. Influence of subunit combinations on signaling by receptors for oncostatin M, leukemia inhibitory factor, and interleukin-6. J Biol Chem. 1997 Jun 13;272(24):15135–15144. doi: 10.1074/jbc.272.24.15135. [DOI] [PubMed] [Google Scholar]
  117. Kurth I., Horsten U., Pflanz S., Dahmen H., Küster A., Grötzinger J., Heinrich P. C., Müller-Newen G. Activation of the signal transducer glycoprotein 130 by both IL-6 and IL-11 requires two distinct binding epitopes. J Immunol. 1999 Feb 1;162(3):1480–1487. [PubMed] [Google Scholar]
  118. Kurth I., Horsten U., Pflanz S., Timmermann A., Küster A., Dahmen H., Tacken I., Heinrich P. C., Müller-Newen G. Importance of the membrane-proximal extracellular domains for activation of the signal transducer glycoprotein 130. J Immunol. 2000 Jan 1;164(1):273–282. doi: 10.4049/jimmunol.164.1.273. [DOI] [PubMed] [Google Scholar]
  119. Lai C. F., Ripperger J., Morella K. K., Wang Y., Gearing D. P., Fey G. H., Baumann H. Separate signaling mechanisms are involved in the control of STAT protein activation and gene regulation via the interleukin 6 response element by the box 3 motif of gp130. J Biol Chem. 1995 Jun 23;270(25):14847–14850. doi: 10.1074/jbc.270.25.14847. [DOI] [PubMed] [Google Scholar]
  120. Lechleider R. J., Sugimoto S., Bennett A. M., Kashishian A. S., Cooper J. A., Shoelson S. E., Walsh C. T., Neel B. G. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J Biol Chem. 1993 Oct 15;268(29):21478–21481. [PubMed] [Google Scholar]
  121. Lehmann Ute, Schmitz Jochen, Weissenbach Manuela, Sobota Radoslaw M., Hortner Michael, Friederichs Kerstin, Behrmann Iris, Tsiaris William, Sasaki Atsuo, Schneider-Mergener Jens. SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J Biol Chem. 2002 Oct 27;278(1):661–671. doi: 10.1074/jbc.M210552200. [DOI] [PubMed] [Google Scholar]
  122. Levy David E., Darnell J. E., Jr Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002 Sep;3(9):651–662. doi: 10.1038/nrm909. [DOI] [PubMed] [Google Scholar]
  123. Lillemeier B. F., Köster M., Kerr I. M. STAT1 from the cell membrane to the DNA. EMBO J. 2001 May 15;20(10):2508–2517. doi: 10.1093/emboj/20.10.2508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Lim C. P., Cao X. Regulation of Stat3 activation by MEK kinase 1. J Biol Chem. 2001 Mar 16;276(24):21004–21011. doi: 10.1074/jbc.M007592200. [DOI] [PubMed] [Google Scholar]
  125. Liu B., Gross M., ten Hoeve J., Shuai K. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3203–3207. doi: 10.1073/pnas.051489598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Liu B., Liao J., Rao X., Kushner S. A., Chung C. D., Chang D. D., Shuai K. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10626–10631. doi: 10.1073/pnas.95.18.10626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Liu B., Shuai K. Induction of apoptosis by protein inhibitor of activated Stat1 through c-Jun NH2-terminal kinase activation. J Biol Chem. 2001 Jul 12;276(39):36624–36631. doi: 10.1074/jbc.M101085200. [DOI] [PubMed] [Google Scholar]
  128. Liu Yan, Rohrschneider Larry R. The gift of Gab. FEBS Lett. 2002 Mar 27;515(1-3):1–7. doi: 10.1016/s0014-5793(02)02425-0. [DOI] [PubMed] [Google Scholar]
  129. Livnah O., Stura E. A., Middleton S. A., Johnson D. L., Jolliffe L. K., Wilson I. A. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science. 1999 Feb 12;283(5404):987–990. doi: 10.1126/science.283.5404.987. [DOI] [PubMed] [Google Scholar]
  130. Lu W., Gong D., Bar-Sagi D., Cole P. A. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol Cell. 2001 Oct;8(4):759–769. doi: 10.1016/s1097-2765(01)00369-0. [DOI] [PubMed] [Google Scholar]
  131. Luo G., Yu-Lee L. Stat5b inhibits NFkappaB-mediated signaling. Mol Endocrinol. 2000 Jan;14(1):114–123. doi: 10.1210/mend.14.1.0399. [DOI] [PubMed] [Google Scholar]
  132. Lütticken C., Coffer P., Yuan J., Schwartz C., Caldenhoven E., Schindler C., Kruijer W., Heinrich P. C., Horn F. Interleukin-6-induced serine phosphorylation of transcription factor APRF: evidence for a role in interleukin-6 target gene induction. FEBS Lett. 1995 Feb 27;360(2):137–143. doi: 10.1016/0014-5793(95)00076-l. [DOI] [PubMed] [Google Scholar]
  133. Lütticken C., Wegenka U. M., Yuan J., Buschmann J., Schindler C., Ziemiecki A., Harpur A. G., Wilks A. F., Yasukawa K., Taga T. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994 Jan 7;263(5143):89–92. doi: 10.1126/science.8272872. [DOI] [PubMed] [Google Scholar]
  134. Magrangeas F., Boisteau O., Denis S., Jacques Y., Minvielle S. Negative cross-talk between interleukin-3 and interleukin-11 is mediated by suppressor of cytokine signalling-3 (SOCS-3). Biochem J. 2001 Jan 15;353(Pt 2):223–230. doi: 10.1042/0264-6021:3530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Martens A. S., Bode J. G., Heinrich P. C., Graeve L. The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells. J Cell Sci. 2000 Oct;113(Pt 20):3593–3602. doi: 10.1242/jcs.113.20.3593. [DOI] [PubMed] [Google Scholar]
  136. Matsumoto A., Masuhara M., Mitsui K., Yokouchi M., Ohtsubo M., Misawa H., Miyajima A., Yoshimura A. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood. 1997 May 1;89(9):3148–3154. [PubMed] [Google Scholar]
  137. McBride K. M., McDonald C., Reich N. C. Nuclear export signal located within theDNA-binding domain of the STAT1transcription factor. EMBO J. 2000 Nov 15;19(22):6196–6206. doi: 10.1093/emboj/19.22.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. McBride Kevin M., Banninger Gregg, McDonald Christine, Reich Nancy C. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J. 2002 Apr 2;21(7):1754–1763. doi: 10.1093/emboj/21.7.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Melen K., Kinnunen L., Julkunen I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem. 2001 Jan 9;276(19):16447–16455. doi: 10.1074/jbc.M008821200. [DOI] [PubMed] [Google Scholar]
  140. Meyer Thomas, Begitt Andreas, Lödige Inga, van Rossum Marleen, Vinkemeier Uwe. Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. EMBO J. 2002 Feb 1;21(3):344–354. doi: 10.1093/emboj/21.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Meyer Thomas, Gavenis Karsten, Vinkemeier Uwe. Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp Cell Res. 2002 Jan 1;272(1):45–55. doi: 10.1006/excr.2001.5405. [DOI] [PubMed] [Google Scholar]
  142. Milocco L. H., Haslam J. A., Rosen J., Seidel H. M. Design of conditionally active STATs: insights into STAT activation and gene regulatory function. Mol Cell Biol. 1999 Apr;19(4):2913–2920. doi: 10.1128/mcb.19.4.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Ming X. F., Stoecklin G., Lu M., Looser R., Moroni C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol. 2001 Sep;21(17):5778–5789. doi: 10.1128/MCB.21.17.5778-5789.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Mitani Y., Takaoka A., Kim S. H., Kato Y., Yokochi T., Tanaka N., Taniguchi T. Cross talk of the interferon-alpha/beta signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells. 2001 Jul;6(7):631–640. doi: 10.1046/j.1365-2443.2001.00448.x. [DOI] [PubMed] [Google Scholar]
  145. Moore P. S., Boshoff C., Weiss R. A., Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science. 1996 Dec 6;274(5293):1739–1744. doi: 10.1126/science.274.5293.1739. [DOI] [PubMed] [Google Scholar]
  146. Mowen K. A., Tang J., Zhu W., Schurter B. T., Shuai K., Herschman H. R., David M. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001 Mar 9;104(5):731–741. doi: 10.1016/s0092-8674(01)00269-0. [DOI] [PubMed] [Google Scholar]
  147. Mowen K., David M. Regulation of STAT1 nuclear export by Jak1. Mol Cell Biol. 2000 Oct;20(19):7273–7281. doi: 10.1128/mcb.20.19.7273-7281.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Murakami M., Narazaki M., Hibi M., Yawata H., Yasukawa K., Hamaguchi M., Taga T., Kishimoto T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11349–11353. doi: 10.1073/pnas.88.24.11349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Myers M. P., Andersen J. N., Cheng A., Tremblay M. L., Horvath C. M., Parisien J. P., Salmeen A., Barford D., Tonks N. K. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001 Nov 1;276(51):47771–47774. doi: 10.1074/jbc.C100583200. [DOI] [PubMed] [Google Scholar]
  150. Müller-Newen G., Küster A., Hemmann U., Keul R., Horsten U., Martens A., Graeve L., Wijdenes J., Heinrich P. C. Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J Immunol. 1998 Dec 1;161(11):6347–6355. [PubMed] [Google Scholar]
  151. Müller-Newen G., Küster A., Wijdenes J., Schaper F., Heinrich P. C. Studies on the interleukin-6-type cytokine signal transducer gp130 reveal a novel mechanism of receptor activation by monoclonal antibodies. J Biol Chem. 2000 Feb 18;275(7):4579–4586. doi: 10.1074/jbc.275.7.4579. [DOI] [PubMed] [Google Scholar]
  152. Nair Jayasree S., DaFonseca Christopher J., Tjernberg Agneta, Sun Wei, Darnell James E., Jr, Chait Brian T., Zhang J. Jillian. Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5971–5976. doi: 10.1073/pnas.052159099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N., Kajita T., Taga T., Yoshizaki K. Structure and function of a new STAT-induced STAT inhibitor. Nature. 1997 Jun 26;387(6636):924–929. doi: 10.1038/43219. [DOI] [PubMed] [Google Scholar]
  154. Nakajima H., Brindle P. K., Handa M., Ihle J. N. Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription. EMBO J. 2001 Dec 3;20(23):6836–6844. doi: 10.1093/emboj/20.23.6836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Nakayama Koh, Kim Kyung-Woon, Miyajima Atsushi. A novel nuclear zinc finger protein EZI enhances nuclear retention and transactivation of STAT3. EMBO J. 2002 Nov 15;21(22):6174–6184. doi: 10.1093/emboj/cdf596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Ndubuisi M. I., Guo G. G., Fried V. A., Etlinger J. D., Sehgal P. B. Cellular physiology of STAT3: Where's the cytoplasmic monomer? J Biol Chem. 1999 Sep 3;274(36):25499–25509. doi: 10.1074/jbc.274.36.25499. [DOI] [PubMed] [Google Scholar]
  157. Negoro S., Oh H., Tone E., Kunisada K., Fujio Y., Walsh K., Kishimoto T., Yamauchi-Takihara K. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation. 2001 Jan 30;103(4):555–561. doi: 10.1161/01.cir.103.4.555. [DOI] [PubMed] [Google Scholar]
  158. Neininger Armin, Kontoyiannis Dimitris, Kotlyarov Alexey, Winzen Reinhard, Eckert Rolf, Volk Hans-Dieter, Holtmann Helmut, Kollias George, Gaestel Matthias. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem. 2001 Dec 6;277(5):3065–3068. doi: 10.1074/jbc.C100685200. [DOI] [PubMed] [Google Scholar]
  159. Nicholson S. E., De Souza D., Fabri L. J., Corbin J., Willson T. A., Zhang J. G., Silva A., Asimakis M., Farley A., Nash A. D. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6493–6498. doi: 10.1073/pnas.100135197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Nicholson S. E., Willson T. A., Farley A., Starr R., Zhang J. G., Baca M., Alexander W. S., Metcalf D., Hilton D. J., Nicola N. A. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 1999 Jan 15;18(2):375–385. doi: 10.1093/emboj/18.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Niemand Claudia, Nimmesgern Ariane, Haan Serge, Fischer Patrick, Schaper Fred, Rossaint Rolf, Heinrich Peter C., Müller-Newen Gerhard. Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol. 2003 Mar 15;170(6):3263–3272. doi: 10.4049/jimmunol.170.6.3263. [DOI] [PubMed] [Google Scholar]
  162. Novak U., Ji H., Kanagasundaram V., Simpson R., Paradiso L. STAT3 forms stable homodimers in the presence of divalent cations prior to activation. Biochem Biophys Res Commun. 1998 Jun 29;247(3):558–563. doi: 10.1006/bbrc.1998.8829. [DOI] [PubMed] [Google Scholar]
  163. Novotny-Diermayr Veronica, Zhang Tong, Gu Lei, Cao Xinmin. Protein kinase C delta associates with the interleukin-6 receptor subunit glycoprotein (gp) 130 via Stat3 and enhances Stat3-gp130 interaction. J Biol Chem. 2002 Oct 1;277(51):49134–49142. doi: 10.1074/jbc.M206727200. [DOI] [PubMed] [Google Scholar]
  164. O'Shea John J., Gadina Massimo, Schreiber Robert D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002 Apr;109 (Suppl):S121–S131. doi: 10.1016/s0092-8674(02)00701-8. [DOI] [PubMed] [Google Scholar]
  165. Ohtani T., Ishihara K., Atsumi T., Nishida K., Kaneko Y., Miyata T., Itoh S., Narimatsu M., Maeda H., Fukada T. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3- and SHP2-mediated signals in immune responses. Immunity. 2000 Jan;12(1):95–105. doi: 10.1016/s1074-7613(00)80162-4. [DOI] [PubMed] [Google Scholar]
  166. Owczarek C. M., Zhang Y., Layton M. J., Metcalf D., Roberts B., Nicola N. A. The unusual species cross-reactivity of the leukemia inhibitory factor receptor alpha-chain is determined primarily by the immunoglobulin-like domain. J Biol Chem. 1997 Sep 19;272(38):23976–23985. doi: 10.1074/jbc.272.38.23976. [DOI] [PubMed] [Google Scholar]
  167. Paulson M., Pisharody S., Pan L., Guadagno S., Mui A. L., Levy D. E. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem. 1999 Sep 3;274(36):25343–25349. doi: 10.1074/jbc.274.36.25343. [DOI] [PubMed] [Google Scholar]
  168. Pearson M. A., Reczek D., Bretscher A., Karplus P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 2000 Apr 28;101(3):259–270. doi: 10.1016/s0092-8674(00)80836-3. [DOI] [PubMed] [Google Scholar]
  169. Pfeffer L. M., Mullersman J. E., Pfeffer S. R., Murti A., Shi W., Yang C. H. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science. 1997 May 30;276(5317):1418–1420. doi: 10.1126/science.276.5317.1418. [DOI] [PubMed] [Google Scholar]
  170. Pfitzner E., Jähne R., Wissler M., Stoecklin E., Groner B. p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol. 1998 Oct;12(10):1582–1593. doi: 10.1210/mend.12.10.0180. [DOI] [PubMed] [Google Scholar]
  171. Pflanz S., Kurth I., Grötzinger J., Heinrich P. C., Müller-Newen G. Two different epitopes of the signal transducer gp130 sequentially cooperate on IL-6-induced receptor activation. J Immunol. 2000 Dec 15;165(12):7042–7049. doi: 10.4049/jimmunol.165.12.7042. [DOI] [PubMed] [Google Scholar]
  172. Plun-Favreau H., Elson G., Chabbert M., Froger J., deLapeyrière O., Lelièvre E., Guillet C., Hermann J., Gauchat J. F., Gascan H. The ciliary neurotrophic factor receptor alpha component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J. 2001 Apr 2;20(7):1692–1703. doi: 10.1093/emboj/20.7.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Pluskey S., Wandless T. J., Walsh C. T., Shoelson S. E. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J Biol Chem. 1995 Feb 17;270(7):2897–2900. doi: 10.1074/jbc.270.7.2897. [DOI] [PubMed] [Google Scholar]
  174. Podar Klaus, Tai Yu-Tzu, Cole Craig E., Hideshima Teru, Sattler Martin, Hamblin Angela, Mitsiades Nicholas, Schlossman Robert L., Davies Faith E., Morgan Gareth J. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2002 Dec 12;278(8):5794–5801. doi: 10.1074/jbc.M208636200. [DOI] [PubMed] [Google Scholar]
  175. Pollack B. P., Kotenko S. V., He W., Izotova L. S., Barnoski B. L., Pestka S. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem. 1999 Oct 29;274(44):31531–31542. doi: 10.1074/jbc.274.44.31531. [DOI] [PubMed] [Google Scholar]
  176. Qiu Y., Ravi L., Kung H. J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature. 1998 May 7;393(6680):83–85. doi: 10.1038/30012. [DOI] [PubMed] [Google Scholar]
  177. Radtke Simone, Hermanns Heike M., Haan Claude, Schmitz-Van De Leur Hildegard, Gascan Hugues, Heinrich Peter C., Behrmann Iris. Novel role of Janus kinase 1 in the regulation of oncostatin M receptor surface expression. J Biol Chem. 2002 Jan 10;277(13):11297–11305. doi: 10.1074/jbc.M100822200. [DOI] [PubMed] [Google Scholar]
  178. Ragimbeau Josiane, Dondi Elisabetta, Alcover Andrés, Eid Pierre, Uzé Gilles, Pellegrini Sandra. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 2003 Feb 3;22(3):537–547. doi: 10.1093/emboj/cdg038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Robledo O., Fourcin M., Chevalier S., Guillet C., Auguste P., Pouplard-Barthelaix A., Pennica D., Gascan H. Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J Biol Chem. 1997 Feb 21;272(8):4855–4863. doi: 10.1074/jbc.272.8.4855. [DOI] [PubMed] [Google Scholar]
  180. Rodig S. J., Meraz M. A., White J. M., Lampe P. A., Riley J. K., Arthur C. D., King K. L., Sheehan K. C., Yin L., Pennica D. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998 May 1;93(3):373–383. doi: 10.1016/s0092-8674(00)81166-6. [DOI] [PubMed] [Google Scholar]
  181. Rui Liangyou, Yuan Minsheng, Frantz Daniel, Shoelson Steven, White Morris F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002 Sep 12;277(44):42394–42398. doi: 10.1074/jbc.C200444200. [DOI] [PubMed] [Google Scholar]
  182. Rödel B., Tavassoli K., Karsunky H., Schmidt T., Bachmann M., Schaper F., Heinrich P., Shuai K., Elsässer H. P., Möröy T. The zinc finger protein Gfi-1 can enhance STAT3 signaling by interacting with the STAT3 inhibitor PIAS3. EMBO J. 2000 Nov 1;19(21):5845–5855. doi: 10.1093/emboj/19.21.5845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Sachdev S., Bruhn L., Sieber H., Pichler A., Melchior F., Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 2001 Dec 1;15(23):3088–3103. doi: 10.1101/gad.944801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Sancéau J., Hiscott J., Delattre O., Wietzerbin J. IFN-beta induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene. 2000 Jul 13;19(30):3372–3383. doi: 10.1038/sj.onc.1203670. [DOI] [PubMed] [Google Scholar]
  185. Sasaki A., Yasukawa H., Shouda T., Kitamura T., Dikic I., Yoshimura A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem. 2000 Sep 22;275(38):29338–29347. doi: 10.1074/jbc.M003456200. [DOI] [PubMed] [Google Scholar]
  186. Sasaki A., Yasukawa H., Suzuki A., Kamizono S., Syoda T., Kinjyo I., Sasaki M., Johnston J. A., Yoshimura A. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells. 1999 Jun;4(6):339–351. doi: 10.1046/j.1365-2443.1999.00263.x. [DOI] [PubMed] [Google Scholar]
  187. Sasse J., Hemmann U., Schwartz C., Schniertshauer U., Heesel B., Landgraf C., Schneider-Mergener J., Heinrich P. C., Horn F. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol Cell Biol. 1997 Aug;17(8):4677–4686. doi: 10.1128/mcb.17.8.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Schaefer T. S., Sanders L. K., Nathans D. Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9097–9101. doi: 10.1073/pnas.92.20.9097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Schaefer T. S., Sanders L. K., Park O. K., Nathans D. Functional differences between Stat3alpha and Stat3beta. Mol Cell Biol. 1997 Sep;17(9):5307–5316. doi: 10.1128/mcb.17.9.5307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Schaeffer M., Schneiderbauer M., Weidler S., Tavares R., Warmuth M., de Vos G., Hallek M. Signaling through a novel domain of gp130 mediates cell proliferation and activation of Hck and Erk kinases. Mol Cell Biol. 2001 Dec;21(23):8068–8081. doi: 10.1128/MCB.21.23.8068-8081.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Schaeper U., Gehring N. H., Fuchs K. P., Sachs M., Kempkes B., Birchmeier W. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000 Jun 26;149(7):1419–1432. doi: 10.1083/jcb.149.7.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Schaper F., Gendo C., Eck M., Schmitz J., Grimm C., Anhuf D., Kerr I. M., Heinrich P. C. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression. Biochem J. 1998 Nov 1;335(Pt 3):557–565. doi: 10.1042/bj3350557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Schiemann W. P., Bartoe J. L., Nathanson N. M. Box 3-independent signaling mechanisms are involved in leukemia inhibitory factor receptor alpha- and gp130-mediated stimulation of mitogen-activated protein kinase. Evidence for participation of multiple signaling pathways which converge at Ras. J Biol Chem. 1997 Jun 27;272(26):16631–16636. doi: 10.1074/jbc.272.26.16631. [DOI] [PubMed] [Google Scholar]
  194. Schmitz J., Dahmen H., Grimm C., Gendo C., Müller-Newen G., Heinrich P. C., Schaper F. The cytoplasmic tyrosine motifs in full-length glycoprotein 130 have different roles in IL-6 signal transduction. J Immunol. 2000 Jan 15;164(2):848–854. doi: 10.4049/jimmunol.164.2.848. [DOI] [PubMed] [Google Scholar]
  195. Schmitz J., Weissenbach M., Haan S., Heinrich P. C., Schaper F. SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J Biol Chem. 2000 Apr 28;275(17):12848–12856. doi: 10.1074/jbc.275.17.12848. [DOI] [PubMed] [Google Scholar]
  196. Schuringa J. J., Dekker L. V., Vellenga E., Kruijer W. Sequential activation of Rac-1, SEK-1/MKK-4, and protein kinase Cdelta is required for interleukin-6-induced STAT3 Ser-727 phosphorylation and transactivation. J Biol Chem. 2001 May 2;276(29):27709–27715. doi: 10.1074/jbc.M009821200. [DOI] [PubMed] [Google Scholar]
  197. Schuringa J. J., Jonk L. J., Dokter W. H., Vellenga E., Kruijer W. Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components. Biochem J. 2000 Apr 1;347(Pt 1):89–96. [PMC free article] [PubMed] [Google Scholar]
  198. Sehgal Pravin B., Guo Gary G., Shah Mehul, Kumar Vinita, Patel Kirit. Cytokine signaling: STATS in plasma membrane rafts. J Biol Chem. 2002 Jan 28;277(14):12067–12074. doi: 10.1074/jbc.M200018200. [DOI] [PubMed] [Google Scholar]
  199. Sekimoto T., Imamoto N., Nakajima K., Hirano T., Yoneda Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 1997 Dec 1;16(23):7067–7077. doi: 10.1093/emboj/16.23.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Senaldi G., Varnum B. C., Sarmiento U., Starnes C., Lile J., Scully S., Guo J., Elliott G., McNinch J., Shaklee C. L. Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11458–11463. doi: 10.1073/pnas.96.20.11458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Sengupta T. K., Talbot E. S., Scherle P. A., Ivashkiv L. B. Rapid inhibition of interleukin-6 signaling and Stat3 activation mediated by mitogen-activated protein kinases. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11107–11112. doi: 10.1073/pnas.95.19.11107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Shah Mehul, Patel Kirit, Fried Victor A., Sehgal Pravin B. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem. 2002 Sep 13;277(47):45662–45669. doi: 10.1074/jbc.M205935200. [DOI] [PubMed] [Google Scholar]
  203. Shi Yijiang, Hsu Jung-hsin, Hu Liping, Gera Joseph, Lichtenstein Alan. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem. 2002 Feb 28;277(18):15712–15720. doi: 10.1074/jbc.M200043200. [DOI] [PubMed] [Google Scholar]
  204. Shuai K., Horvath C. M., Huang L. H., Qureshi S. A., Cowburn D., Darnell J. E., Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994 Mar 11;76(5):821–828. doi: 10.1016/0092-8674(94)90357-3. [DOI] [PubMed] [Google Scholar]
  205. Shuai K., Liao J., Song M. M. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol Cell Biol. 1996 Sep;16(9):4932–4941. doi: 10.1128/mcb.16.9.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Shuai K., Stark G. R., Kerr I. M., Darnell J. E., Jr A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science. 1993 Sep 24;261(5129):1744–1746. doi: 10.1126/science.7690989. [DOI] [PubMed] [Google Scholar]
  207. Siewert E., Müller-Esterl W., Starr R., Heinrich P. C., Schaper F. Different protein turnover of interleukin-6-type cytokine signalling components. Eur J Biochem. 1999 Oct 1;265(1):251–257. doi: 10.1046/j.1432-1327.1999.00719.x. [DOI] [PubMed] [Google Scholar]
  208. Spiekermann Karsten, Pau Michael, Schwab Ruth, Schmieja Karin, Franzrahe Sabine, Hiddemann Wolfgang. Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp Hematol. 2002 Mar;30(3):262–271. doi: 10.1016/s0301-472x(01)00787-1. [DOI] [PubMed] [Google Scholar]
  209. Stahl N., Boulton T. G., Farruggella T., Ip N. Y., Davis S., Witthuhn B. A., Quelle F. W., Silvennoinen O., Barbieri G., Pellegrini S. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994 Jan 7;263(5143):92–95. doi: 10.1126/science.8272873. [DOI] [PubMed] [Google Scholar]
  210. Stahl N., Farruggella T. J., Boulton T. G., Zhong Z., Darnell J. E., Jr, Yancopoulos G. D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science. 1995 Mar 3;267(5202):1349–1353. doi: 10.1126/science.7871433. [DOI] [PubMed] [Google Scholar]
  211. Stancato L. F., David M., Carter-Su C., Larner A. C., Pratt W. B. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem. 1996 Feb 23;271(8):4134–4137. doi: 10.1074/jbc.271.8.4134. [DOI] [PubMed] [Google Scholar]
  212. Starr R., Willson T. A., Viney E. M., Murray L. J., Rayner J. R., Jenkins B. J., Gonda T. J., Alexander W. S., Metcalf D., Nicola N. A. A family of cytokine-inducible inhibitors of signalling. Nature. 1997 Jun 26;387(6636):917–921. doi: 10.1038/43206. [DOI] [PubMed] [Google Scholar]
  213. Stoiber D., Kovarik P., Cohney S., Johnston J. A., Steinlein P., Decker T. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J Immunol. 1999 Sep 1;163(5):2640–2647. [PubMed] [Google Scholar]
  214. Stoiber D., Stockinger S., Steinlein P., Kovarik J., Decker T. Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3. J Immunol. 2001 Jan 1;166(1):466–472. doi: 10.4049/jimmunol.166.1.466. [DOI] [PubMed] [Google Scholar]
  215. Strehlow I., Schindler C. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem. 1998 Oct 23;273(43):28049–28056. doi: 10.1074/jbc.273.43.28049. [DOI] [PubMed] [Google Scholar]
  216. Strobl B., Arulampalam V., Is'harc H., Newman S. J., Schlaak J. F., Watling D., Costa-Pereira A. P., Schaper F., Behrmann I., Sheehan K. C. A completely foreign receptor can mediate an interferon-gamma-like response. EMBO J. 2001 Oct 1;20(19):5431–5442. doi: 10.1093/emboj/20.19.5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Sugimoto S., Wandless T. J., Shoelson S. E., Neel B. G., Walsh C. T. Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J Biol Chem. 1994 May 6;269(18):13614–13622. [PubMed] [Google Scholar]
  218. Symes A., Gearan T., Eby J., Fink J. S. Integration of Jak-Stat and AP-1 signaling pathways at the vasoactive intestinal peptide cytokine response element regulates ciliary neurotrophic factor-dependent transcription. J Biol Chem. 1997 Apr 11;272(15):9648–9654. doi: 10.1074/jbc.272.15.9648. [DOI] [PubMed] [Google Scholar]
  219. Symes A., Stahl N., Reeves S. A., Farruggella T., Servidei T., Gearan T., Yancopoulos G., Fink J. S. The protein tyrosine phosphatase SHP-2 negatively regulates ciliary neurotrophic factor induction of gene expression. Curr Biol. 1997 Sep 1;7(9):697–700. doi: 10.1016/s0960-9822(06)00298-3. [DOI] [PubMed] [Google Scholar]
  220. Takahashi-Tezuka M., Yoshida Y., Fukada T., Ohtani T., Yamanaka Y., Nishida K., Nakajima K., Hibi M., Hirano T. Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol Cell Biol. 1998 Jul;18(7):4109–4117. doi: 10.1128/mcb.18.7.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Tan Jiann-An, Hall Susan H., Hamil Katherine G., Grossman Gail, Petrusz Peter, French Frank S. Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem. 2002 Mar 4;277(19):16993–17001. doi: 10.1074/jbc.M109217200. [DOI] [PubMed] [Google Scholar]
  222. Tanner J. W., Chen W., Young R. L., Longmore G. D., Shaw A. S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol Chem. 1995 Mar 24;270(12):6523–6530. doi: 10.1074/jbc.270.12.6523. [DOI] [PubMed] [Google Scholar]
  223. Tanuma N., Nakamura K., Shima H., Kikuchi K. Protein-tyrosine phosphatase PTPepsilon C inhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem. 2000 Sep 8;275(36):28216–28221. doi: 10.1074/jbc.M003661200. [DOI] [PubMed] [Google Scholar]
  224. Tanuma N., Shima H., Nakamura K., Kikuchi K. Protein tyrosine phosphatase epsilonC selectively inhibits interleukin-6- and interleukin- 10-induced JAK-STAT signaling. Blood. 2001 Nov 15;98(10):3030–3034. doi: 10.1182/blood.v98.10.3030. [DOI] [PubMed] [Google Scholar]
  225. Thiel S., Behrmann I., Timmermann A., Dahmen H., Müller-Newen G., Schaper F., Tavernier J., Pitard V., Heinrich P. C., Graeve L. Identification of a Leu-lle internalization motif within the cytoplasmic domain of the leukaemia inhibitory factor receptor. Biochem J. 1999 Apr 1;339(Pt 1):15–19. [PMC free article] [PubMed] [Google Scholar]
  226. Thiel S., Dahmen H., Martens A., Müller-Newen G., Schaper F., Heinrich P. C., Graeve L. Constitutive internalization and association with adaptor protein-2 of the interleukin-6 signal transducer gp130. FEBS Lett. 1998 Dec 18;441(2):231–234. doi: 10.1016/s0014-5793(98)01559-2. [DOI] [PubMed] [Google Scholar]
  227. Timmermann A., Pflanz S., Grötzinger J., Küster A., Kurth I., Pitard V., Heinrich P. C., Müller-Newen G. Different epitopes are required for gp130 activation by interleukin-6, oncostatin M and leukemia inhibitory factor. FEBS Lett. 2000 Feb 25;468(2-3):120–124. doi: 10.1016/s0014-5793(00)01205-9. [DOI] [PubMed] [Google Scholar]
  228. Timmermann Andreas, Küster Andrea, Kurth Ingo, Heinrich Peter C., Müller-Newen Gerhard. A functional role of the membrane-proximal extracellular domains of the signal transducer gp130 in heterodimerization with the leukemia inhibitory factor receptor. Eur J Biochem. 2002 Jun;269(11):2716–2726. doi: 10.1046/j.1432-1033.2002.02941.x. [DOI] [PubMed] [Google Scholar]
  229. Tomida M., Heike T., Yokota T. Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells. Blood. 1999 Mar 15;93(6):1934–1941. [PubMed] [Google Scholar]
  230. Uddin Shahab, Sassano Antonella, Deb Dilip K., Verma Amit, Majchrzak Beata, Rahman Arshad, Malik Asrar B., Fish Eleanor N., Platanias Leonidas C. Protein kinase C-delta (PKC-delta ) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem. 2002 Feb 11;277(17):14408–14416. doi: 10.1074/jbc.M109671200. [DOI] [PubMed] [Google Scholar]
  231. Ungureanu Daniela, Saharinen Pipsa, Junttila Ilkka, Hilton Douglas J., Silvennoinen Olli. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol. 2002 May;22(10):3316–3326. doi: 10.1128/MCB.22.10.3316-3326.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Valdez B. C., Henning D., Perlaky L., Busch R. K., Busch H. Cloning and characterization of Gu/RH-II binding protein. Biochem Biophys Res Commun. 1997 May 19;234(2):335–340. doi: 10.1006/bbrc.1997.6642. [DOI] [PubMed] [Google Scholar]
  233. Varghese J. N., Moritz R. L., Lou M-Z, Van Donkelaar A., Ji H., Ivancic N., Branson K. M., Hall N. E., Simpson R. J. Structure of the extracellular domains of the human interleukin-6 receptor alpha -chain. Proc Natl Acad Sci U S A. 2002 Dec 2;99(25):15959–15964. doi: 10.1073/pnas.232432399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Verdier F., Chrétien S., Muller O., Varlet P., Yoshimura A., Gisselbrecht S., Lacombe C., Mayeux P. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem. 1998 Oct 23;273(43):28185–28190. doi: 10.1074/jbc.273.43.28185. [DOI] [PubMed] [Google Scholar]
  235. Vinkemeier U., Moarefi I., Darnell J. E., Jr, Kuriyan J. Structure of the amino-terminal protein interaction domain of STAT-4. Science. 1998 Feb 13;279(5353):1048–1052. doi: 10.1126/science.279.5353.1048. [DOI] [PubMed] [Google Scholar]
  236. Wang Y., Fuller G. M. Phosphorylation and internalization of gp130 occur after IL-6 activation of Jak2 kinase in hepatocytes. Mol Biol Cell. 1994 Jul;5(7):819–828. doi: 10.1091/mbc.5.7.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Wang Y., Ripperger J., Fey G. H., Samols D., Kordula T., Wetzler M., Van Etten R. A., Baumann H. Modulation of hepatic acute phase gene expression by epidermal growth factor and Src protein tyrosine kinases in murine and human hepatic cells. Hepatology. 1999 Sep;30(3):682–697. doi: 10.1002/hep.510300318. [DOI] [PubMed] [Google Scholar]
  238. Wang Y., Robledo O., Kinzie E., Blanchard F., Richards C., Miyajima A., Baumann H. Receptor subunit-specific action of oncostatin M in hepatic cells and its modulation by leukemia inhibitory factor. J Biol Chem. 2000 Aug 18;275(33):25273–25285. doi: 10.1074/jbc.M002296200. [DOI] [PubMed] [Google Scholar]
  239. Wegenka U. M., Buschmann J., Lütticken C., Heinrich P. C., Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol. 1993 Jan;13(1):276–288. doi: 10.1128/mcb.13.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Winzen R., Kracht M., Ritter B., Wilhelm A., Chen C. Y., Shyu A. B., Müller M., Gaestel M., Resch K., Holtmann H. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 1999 Sep 15;18(18):4969–4980. doi: 10.1093/emboj/18.18.4969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Wu Tong R., Hong Y. Kate, Wang Xu-Dong, Ling Mike Y., Dragoi Ana M., Chung Alicia S., Campbell Andrew G., Han Zhi-Yong, Feng Gen-Sheng, Chin Y. Eugene. SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J Biol Chem. 2002 Sep 22;277(49):47572–47580. doi: 10.1074/jbc.M207536200. [DOI] [PubMed] [Google Scholar]
  242. Yamamoto Tetsuya, Sekine Yuichi, Kashima Keiichi, Kubota Atsuko, Sato Noriko, Aoki Naohito, Matsuda Tadashi. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002 Oct 4;297(4):811–817. doi: 10.1016/s0006-291x(02)02291-x. [DOI] [PubMed] [Google Scholar]
  243. Yasukawa H., Misawa H., Sakamoto H., Masuhara M., Sasaki A., Wakioka T., Ohtsuka S., Imaizumi T., Matsuda T., Ihle J. N. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 1999 Mar 1;18(5):1309–1320. doi: 10.1093/emboj/18.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Yin T., Shen R., Feng G. S., Yang Y. C. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J Biol Chem. 1997 Jan 10;272(2):1032–1037. doi: 10.1074/jbc.272.2.1032. [DOI] [PubMed] [Google Scholar]
  245. Yoo Joo-Yeon, Huso David L., Nathans Daniel, Desiderio Stephen. Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell. 2002 Feb 8;108(3):331–344. doi: 10.1016/s0092-8674(02)00636-0. [DOI] [PubMed] [Google Scholar]
  246. Yoshimura A., Ohkubo T., Kiguchi T., Jenkins N. A., Gilbert D. J., Copeland N. G., Hara T., Miyajima A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995 Jun 15;14(12):2816–2826. doi: 10.1002/j.1460-2075.1995.tb07281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Zauberman A., Zipori D., Krupsky M., Ben-Levy R. Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3. Oncogene. 1999 Jul 1;18(26):3886–3893. doi: 10.1038/sj.onc.1202738. [DOI] [PubMed] [Google Scholar]
  248. Zeng Rong, Aoki Yutaka, Yoshida Minoru, Arai Ken-ichi, Watanabe Sumiko. Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and -independent manner. J Immunol. 2002 May 1;168(9):4567–4575. doi: 10.4049/jimmunol.168.9.4567. [DOI] [PubMed] [Google Scholar]
  249. Zhang J. G., Farley A., Nicholson S. E., Willson T. A., Zugaro L. M., Simpson R. J., Moritz R. L., Cary D., Richardson R., Hausmann G. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2071–2076. doi: 10.1073/pnas.96.5.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Zhang J. J., Vinkemeier U., Gu W., Chakravarti D., Horvath C. M., Darnell J. E., Jr Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15092–15096. doi: 10.1073/pnas.93.26.15092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Zhang Si Qing, Tsiaras William G., Araki Toshiyuki, Wen Gengyun, Minichiello Liliana, Klein Ruediger, Neel Benjamin G. Receptor-specific regulation of phosphatidylinositol 3'-kinase activation by the protein tyrosine phosphatase Shp2. Mol Cell Biol. 2002 Jun;22(12):4062–4072. doi: 10.1128/MCB.22.12.4062-4072.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Zhang X., Darnell J. E., Jr Functional importance of Stat3 tetramerization in activation of the alpha 2-macroglobulin gene. J Biol Chem. 2001 Jul 3;276(36):33576–33581. doi: 10.1074/jbc.M104978200. [DOI] [PubMed] [Google Scholar]
  253. Zhang X., Wrzeszczynska M. H., Horvath C. M., Darnell J. E., Jr Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol. 1999 Oct;19(10):7138–7146. doi: 10.1128/mcb.19.10.7138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Zhang Z., Fuller G. M. Interleukin 1beta inhibits interleukin 6-mediated rat gamma fibrinogen gene expression. Blood. 2000 Nov 15;96(10):3466–3472. [PubMed] [Google Scholar]
  255. Zhang Z., Fuller G. M. The competitive binding of STAT3 and NF-kappaB on an overlapping DNA binding site. Biochem Biophys Res Commun. 1997 Aug 8;237(1):90–94. doi: 10.1006/bbrc.1997.7082. [DOI] [PubMed] [Google Scholar]
  256. Zhang Z., Jones S., Hagood J. S., Fuentes N. L., Fuller G. M. STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem. 1997 Dec 5;272(49):30607–30610. doi: 10.1074/jbc.272.49.30607. [DOI] [PubMed] [Google Scholar]
  257. Zhou Y. J., Chen M., Cusack N. A., Kimmel L. H., Magnuson K. S., Boyd J. G., Lin W., Roberts J. L., Lengi A., Buckley R. H. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol Cell. 2001 Nov;8(5):959–969. doi: 10.1016/s1097-2765(01)00398-7. [DOI] [PubMed] [Google Scholar]
  258. Zhu M., John S., Berg M., Leonard W. J. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell. 1999 Jan 8;96(1):121–130. doi: 10.1016/s0092-8674(00)80965-4. [DOI] [PubMed] [Google Scholar]
  259. Zhu Wei, Mustelin Tomas, David Michael. Arginine methylation of STAT1 regulates its dephosphorylation by T cell protein tyrosine phosphatase. J Biol Chem. 2002 Aug 8;277(39):35787–35790. doi: 10.1074/jbc.C200346200. [DOI] [PubMed] [Google Scholar]
  260. ten Hoeve Johanna, de Jesus Ibarra-Sanchez Maria, Fu Yubin, Zhu Wei, Tremblay Michel, David Michael, Shuai Ke. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002 Aug;22(16):5662–5668. doi: 10.1128/MCB.22.16.5662-5668.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES