Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 15;376(Pt 3):553–569. doi: 10.1042/BJ20031169

Bioinformatic analysis of the nucleolus.

Anthony K L Leung 1, Jens S Andersen 1, Matthias Mann 1, Angus I Lamond 1
PMCID: PMC1223824  PMID: 14531731

Abstract

The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.

Full Text

The Full Text of this article is available as a PDF (711.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold Ruedi, Mann Matthias. Mass spectrometry-based proteomics. Nature. 2003 Mar 13;422(6928):198–207. doi: 10.1038/nature01511. [DOI] [PubMed] [Google Scholar]
  2. Aebersold Ruedi, Watts Julian D. The need for national centers for proteomics. Nat Biotechnol. 2002 Jul;20(7):651–651. doi: 10.1038/nbt0702-651. [DOI] [PubMed] [Google Scholar]
  3. Aitchison J. D., Rout M. P. The road to ribosomes. Filling potholes in the export pathway. J Cell Biol. 2000 Nov 27;151(5):F23–F26. doi: 10.1083/jcb.151.5.f23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  5. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Amann J., Kidd V. J., Lahti J. M. Characterization of putative human homologues of the yeast chromosome transmission fidelity gene, CHL1. J Biol Chem. 1997 Feb 7;272(6):3823–3832. doi: 10.1074/jbc.272.6.3823. [DOI] [PubMed] [Google Scholar]
  7. Andersen J. S., Mann M. Functional genomics by mass spectrometry. FEBS Lett. 2000 Aug 25;480(1):25–31. doi: 10.1016/s0014-5793(00)01773-7. [DOI] [PubMed] [Google Scholar]
  8. Andersen Jens S., Lyon Carol E., Fox Archa H., Leung Anthony K. L., Lam Yun Wah, Steen Hanno, Mann Matthias, Lamond Angus I. Directed proteomic analysis of the human nucleolus. Curr Biol. 2002 Jan 8;12(1):1–11. doi: 10.1016/s0960-9822(01)00650-9. [DOI] [PubMed] [Google Scholar]
  9. Annilo T., Karis A., Hoth S., Rikk T., Kruppa J., Metspalu A. Nuclear import and nucleolar accumulation of the human ribosomal protein S7 depends on both a minimal nuclear localization sequence and an adjacent basic region. Biochem Biophys Res Commun. 1998 Aug 28;249(3):759–766. doi: 10.1006/bbrc.1998.9187. [DOI] [PubMed] [Google Scholar]
  10. BIRNSTIEL M. L., FLAMM W. G. INTRANUCLEAR SITE OF HISTONE SYNTHESIS. Science. 1964 Sep 25;145(3639):1435–1437. doi: 10.1126/science.145.3639.1435. [DOI] [PubMed] [Google Scholar]
  11. BIRNSTIEL M. L., HYDE B. B. Protein synthesis by isolated pea nucleoli. J Cell Biol. 1963 Jul;18:41–50. doi: 10.1083/jcb.18.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bailey T. L., Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36. [PubMed] [Google Scholar]
  13. Benninghoff J., Kartarius S., Teleb Z., Selter H., Unteregger G., Zwergel T., Wullich B., Montenarh M. Two different forms of p53 localized differently within cells of urogenital tumours. Cancer Lett. 1999 Sep 20;144(1):55–64. doi: 10.1016/s0304-3835(99)00187-1. [DOI] [PubMed] [Google Scholar]
  14. Biggiogera M., Tanguay R. M., Marin R., Wu Y., Martin T. E., Fakan S. Localization of heat shock proteins in mouse male germ cells: an immunoelectron microscopical study. Exp Cell Res. 1996 Nov 25;229(1):77–85. doi: 10.1006/excr.1996.0345. [DOI] [PubMed] [Google Scholar]
  15. Blüthner M., Bautz F. A. Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. J Exp Med. 1992 Oct 1;176(4):973–980. doi: 10.1084/jem.176.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Boguski M. S., Schuler G. D. ESTablishing a human transcript map. Nat Genet. 1995 Aug;10(4):369–371. doi: 10.1038/ng0895-369. [DOI] [PubMed] [Google Scholar]
  17. Bohmann K., Ferreira J. A., Lamond A. I. Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus. J Cell Biol. 1995 Nov;131(4):817–831. doi: 10.1083/jcb.131.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Boisvert Francois-Michel, Cote Jocelyn, Boulanger Marie-Chloe, Cleroux Patrick, Bachand Francois, Autexier Chantal, Richard Stephane. Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol. 2002 Dec 16;159(6):957–969. doi: 10.1083/jcb.200207028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bolívar J., Díaz I., Iglesias C., Valdivia M. M. Molecular cloning of a zinc finger autoantigen transiently associated with interphase nucleolus and mitotic centromeres and midbodies. Orthologous proteins with nine CXXC motifs highly conserved from nematodes to humans. J Biol Chem. 1999 Dec 17;274(51):36456–36464. doi: 10.1074/jbc.274.51.36456. [DOI] [PubMed] [Google Scholar]
  20. Boudonck K., Dolan L., Shaw P. J. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell. 1999 Jul;10(7):2297–2307. doi: 10.1091/mbc.10.7.2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bukovský A., Caudle M. R., Keenan J. A., Wimalasena J., Foster J. S., Van Meter S. E. Quantitative evaluation of the cell cycle-related retinoblastoma protein and localization of Thy-1 differentiation protein and macrophages during follicular development and atresia, and in human corpora lutea. Biol Reprod. 1995 Apr;52(4):776–792. doi: 10.1095/biolreprod52.4.776. [DOI] [PubMed] [Google Scholar]
  22. Busch H., Busch R. K., Black A., Chan P. K., Chatterjee A., Durban E., Freeman J., Ochs R., Reichlin M., Tan E. M. Novel nucleolar antigens in autoimmune disease. J Rheumatol Suppl. 1987 Jun;14 (Suppl 13):70–77. [PubMed] [Google Scholar]
  23. Busch H., Busch R. K., Freeman J. W., Perlaky L. Nucleolar protein P120 and its targeting for cancer chemotherapy. Boll Soc Ital Biol Sper. 1991 Aug;67(8):739–750. [PubMed] [Google Scholar]
  24. Cabello O. A., Eliseeva E., He W. G., Youssoufian H., Plon S. E., Brinkley B. R., Belmont J. W. Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell. 2001 Nov;12(11):3527–3537. doi: 10.1091/mbc.12.11.3527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Carmo-Fonseca M., Mendes-Soares L., Campos I. To be or not to be in the nucleolus. Nat Cell Biol. 2000 Jun;2(6):E107–E112. doi: 10.1038/35014078. [DOI] [PubMed] [Google Scholar]
  26. Carmo-Fonseca M., Pfeifer K., Schröder H. C., Vaz M. F., Fonseca J. E., Müller W. E., Bachmann M. Identification of La ribonucleoproteins as a component of interchromatin granules. Exp Cell Res. 1989 Nov;185(1):73–85. doi: 10.1016/0014-4827(89)90038-4. [DOI] [PubMed] [Google Scholar]
  27. Carmo-Fonseca Maria, Platani Melpomeni, Swedlow Jason R. Macromolecular mobility inside the cell nucleus. Trends Cell Biol. 2002 Nov;12(11):491–495. doi: 10.1016/s0962-8924(02)02387-5. [DOI] [PubMed] [Google Scholar]
  28. Carmo-Fonseca Maria. The contribution of nuclear compartmentalization to gene regulation. Cell. 2002 Feb 22;108(4):513–521. doi: 10.1016/s0092-8674(02)00650-5. [DOI] [PubMed] [Google Scholar]
  29. Chai Z., Sarcevic B., Mawson A., Toh B. H. SET-related cell division autoantigen-1 (CDA1) arrests cell growth. J Biol Chem. 2001 Jun 6;276(36):33665–33674. doi: 10.1074/jbc.M007681200. [DOI] [PubMed] [Google Scholar]
  30. Chang M. S., Sasaki H., Campbell M. S., Kraeft S. K., Sutherland R., Yang C. Y., Liu Y., Auclair D., Hao L., Sonoda H. HRad17 colocalizes with NHP2L1 in the nucleolus and redistributes after UV irradiation. J Biol Chem. 1999 Dec 17;274(51):36544–36549. doi: 10.1074/jbc.274.51.36544. [DOI] [PubMed] [Google Scholar]
  31. Charroux B., Pellizzoni L., Perkinson R. A., Yong J., Shevchenko A., Mann M., Dreyfuss G. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol. 2000 Mar 20;148(6):1177–1186. doi: 10.1083/jcb.148.6.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Chen D., Huang S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol. 2001 Apr 2;153(1):169–176. doi: 10.1083/jcb.153.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ching Yick-Pang, Zhou Hai-Jun, Yuan Jian-Gang, Qiang Bo-Qin, Kung Hf Hsiang-fu, Jin Dong-Yan. Identification and characterization of FTSJ2, a novel human nucleolar protein homologous to bacterial ribosomal RNA methyltransferase. Genomics. 2002 Jan;79(1):2–6. doi: 10.1006/geno.2001.6670. [DOI] [PubMed] [Google Scholar]
  34. Dalmau J., Gultekin S. H., Voltz R., Hoard R., DesChamps T., Balmaceda C., Batchelor T., Gerstner E., Eichen J., Frennier J. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain. 1999 Jan;122(Pt 1):27–39. doi: 10.1093/brain/122.1.27. [DOI] [PubMed] [Google Scholar]
  35. Eckmann C. R., Jantsch M. F. Xlrbpa, a double-stranded RNA-binding protein associated with ribosomes and heterogeneous nuclear RNPs. J Cell Biol. 1997 Jul 28;138(2):239–253. doi: 10.1083/jcb.138.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Eisenberg D., Marcotte E. M., Xenarios I., Yeates T. O. Protein function in the post-genomic era. Nature. 2000 Jun 15;405(6788):823–826. doi: 10.1038/35015694. [DOI] [PubMed] [Google Scholar]
  37. Fatica Alessandro, Tollervey David. Making ribosomes. Curr Opin Cell Biol. 2002 Jun;14(3):313–318. doi: 10.1016/s0955-0674(02)00336-8. [DOI] [PubMed] [Google Scholar]
  38. Fischer H., Zhang X. U., O'Brien K. P., Kylsten P., Engvall E. C7, a novel nucleolar protein, is the mouse homologue of the Drosophila late puff product L82 and an isoform of human OXR1. Biochem Biophys Res Commun. 2001 Mar 2;281(3):795–803. doi: 10.1006/bbrc.2001.4345. [DOI] [PubMed] [Google Scholar]
  39. Flory Mark R., Griffin Timothy J., Martin Daniel, Aebersold Ruedi. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 2002 Dec;20(12 Suppl):S23–S29. doi: 10.1016/s1471-1931(02)00203-3. [DOI] [PubMed] [Google Scholar]
  40. Fox Archa H., Lam Yun Wah, Leung Anthony K. L., Lyon Carol E., Andersen Jens, Mann Matthias, Lamond Angus I. Paraspeckles: a novel nuclear domain. Curr Biol. 2002 Jan 8;12(1):13–25. doi: 10.1016/s0960-9822(01)00632-7. [DOI] [PubMed] [Google Scholar]
  41. Franco R., Rosenfeld M. G. Hormonally inducible phosphorylation of a nuclear pool of ribosomal protein S6. J Biol Chem. 1990 Mar 15;265(8):4321–4325. [PubMed] [Google Scholar]
  42. Francoeur A. M., Peebles C. L., Gompper P. T., Tan E. M. Identification of Ki (Ku, p70/p80) autoantigens and analysis of anti-Ki autoantibody reactivity. J Immunol. 1986 Mar 1;136(5):1648–1653. [PubMed] [Google Scholar]
  43. Franke W. W. Matthias Jacob Schleiden and the definition of the cell nucleus. Eur J Cell Biol. 1988 Dec;47(2):145–156. [PubMed] [Google Scholar]
  44. Gadal O., Strauss D., Kessl J., Trumpower B., Tollervey D., Hurt E. Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol. 2001 May;21(10):3405–3415. doi: 10.1128/MCB.21.10.3405-3415.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Galcheva-Gargova Z., Gangwani L., Konstantinov K. N., Mikrut M., Theroux S. J., Enoch T., Davis R. J. The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol Biol Cell. 1998 Oct;9(10):2963–2971. doi: 10.1091/mbc.9.10.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Gall J. G. Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol. 2000;16:273–300. doi: 10.1146/annurev.cellbio.16.1.273. [DOI] [PubMed] [Google Scholar]
  47. Gary J. D., Clarke S. RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol. 1998;61:65–131. doi: 10.1016/s0079-6603(08)60825-9. [DOI] [PubMed] [Google Scholar]
  48. Gautier T., Bergès T., Tollervey D., Hurt E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol. 1997 Dec;17(12):7088–7098. doi: 10.1128/mcb.17.12.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M., Michon Anne-Marie, Cruciat Cristina-Maria. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. doi: 10.1038/415141a. [DOI] [PubMed] [Google Scholar]
  50. Gelpi C., Algueró A., Angeles Martinez M., Vidal S., Juarez C., Rodriguez-Sanchez J. L. Identification of protein components reactive with anti-PM/Scl autoantibodies. Clin Exp Immunol. 1990 Jul;81(1):59–64. doi: 10.1111/j.1365-2249.1990.tb05291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Gerbi Susan A., Borovjagin Anton V., Lange Thilo Sascha. The nucleolus: a site of ribonucleoprotein maturation. Curr Opin Cell Biol. 2003 Jun;15(3):318–325. doi: 10.1016/s0955-0674(03)00049-8. [DOI] [PubMed] [Google Scholar]
  52. Gualandris A., Arese M., Shen B., Rifkin D. B. Modulation of cell growth and transformation by doxycycline-regulated FGF-2 expression in NIH-3T3 cells. J Cell Physiol. 1999 Nov;181(2):273–284. doi: 10.1002/(SICI)1097-4652(199911)181:2<273::AID-JCP9>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  53. Hartwell L. H., Hopfield J. J., Leibler S., Murray A. W. From molecular to modular cell biology. Nature. 1999 Dec 2;402(6761 Suppl):C47–C52. doi: 10.1038/35011540. [DOI] [PubMed] [Google Scholar]
  54. Hatanaka M. Discovery of the nucleolar targeting signal. Bioessays. 1990 Mar;12(3):143–148. doi: 10.1002/bies.950120310. [DOI] [PubMed] [Google Scholar]
  55. Hattori H., Liu Y. C., Tohnai I., Ueda M., Kaneda T., Kobayashi T., Tanabe K., Ohtsuka K. Intracellular localization and partial amino acid sequence of a stress-inducible 40-kDa protein in HeLa cells. Cell Struct Funct. 1992 Feb;17(1):77–86. doi: 10.1247/csf.17.77. [DOI] [PubMed] [Google Scholar]
  56. Hebert Michael D., Shpargel Karl B., Ospina Jason K., Tucker Karen E., Matera A. Gregory. Coilin methylation regulates nuclear body formation. Dev Cell. 2002 Sep;3(3):329–337. doi: 10.1016/s1534-5807(02)00222-8. [DOI] [PubMed] [Google Scholar]
  57. Heese Klaus, Nakayama Takahiro, Hata Ryuji, Masumura Makoto, Akatsu Hiroyasu, Li Feng, Nagai Yasuo, Yamamoto Takayuki, Kosaka Kenji, Suemoto Takahiro. Characterizing CGI-94 (comparative gene identification-94) which is down-regulated in the hippocampus of early stage Alzheimer's disease brain. Eur J Neurosci. 2002 Jan;15(1):79–86. doi: 10.1046/j.0953-816x.2001.01836.x. [DOI] [PubMed] [Google Scholar]
  58. Heiss N. S., Knight S. W., Vulliamy T. J., Klauck S. M., Wiemann S., Mason P. J., Poustka A., Dokal I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998 May;19(1):32–38. doi: 10.1038/ng0598-32. [DOI] [PubMed] [Google Scholar]
  59. Henderson J. E., Amizuka N., Warshawsky H., Biasotto D., Lanske B. M., Goltzman D., Karaplis A. C. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol. 1995 Aug;15(8):4064–4075. doi: 10.1128/mcb.15.8.4064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hiscox J. A. The nucleolus--a gateway to viral infection? Arch Virol. 2002 Jun;147(6):1077–1089. doi: 10.1007/s00705-001-0792-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ho J. H., Kallstrom G., Johnson A. W. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol. 2000 Nov 27;151(5):1057–1066. doi: 10.1083/jcb.151.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  63. Hoogeveen André T., Rossetti Stefano, Stoyanova Violeta, Schonkeren Joris, Fenaroli Angelia, Schiaffonati Luisa, van Unen Leontine, Sacchi Nicoletta. The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies. Oncogene. 2002 Sep 26;21(43):6703–6712. doi: 10.1038/sj.onc.1205882. [DOI] [PubMed] [Google Scholar]
  64. Hsu T., King D. L., LaBonne C., Kafatos F. C. A Drosophila single-strand DNA/RNA-binding factor contains a high-mobility-group box and is enriched in the nucleolus. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6488–6492. doi: 10.1073/pnas.90.14.6488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Huang S., Deerinck T. J., Ellisman M. H., Spector D. L. The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol. 1997 Jun 2;137(5):965–974. doi: 10.1083/jcb.137.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Huang Z., Philippin B., O'Leary E., Bonventre J. V., Kriz W., Witzgall R. Expression of the transcriptional repressor protein Kid-1 leads to the disintegration of the nucleolus. J Biol Chem. 1999 Mar 19;274(12):7640–7648. doi: 10.1074/jbc.274.12.7640. [DOI] [PubMed] [Google Scholar]
  67. Hudson J. W., Kozarova A., Cheung P., Macmillan J. C., Swallow C. J., Cross J. C., Dennis J. W. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol. 2001 Mar 20;11(6):441–446. doi: 10.1016/s0960-9822(01)00117-8. [DOI] [PubMed] [Google Scholar]
  68. Iborra F. J., Jackson D. A., Cook P. R. Coupled transcription and translation within nuclei of mammalian cells. Science. 2001 Jun 21;293(5532):1139–1142. doi: 10.1126/science.1061216. [DOI] [PubMed] [Google Scholar]
  69. Iggo R. D., Jamieson D. J., MacNeill S. A., Southgate J., McPheat J., Lane D. P. p68 RNA helicase: identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol. 1991 Mar;11(3):1326–1333. doi: 10.1128/mcb.11.3.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Ino H., Mochizuki T., Yanaihara N., Chiba T. p34cdc2 homologue is located in nucleoli of the nervous and endocrine systems. Brain Res. 1993 Jun 18;614(1-2):131–136. doi: 10.1016/0006-8993(93)91026-o. [DOI] [PubMed] [Google Scholar]
  71. Jacobson M. R., Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7981–7986. doi: 10.1073/pnas.95.14.7981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Janicki Susan M., Spector David L. Nuclear choreography: interpretations from living cells. Curr Opin Cell Biol. 2003 Apr;15(2):149–157. doi: 10.1016/s0955-0674(03)00012-7. [DOI] [PubMed] [Google Scholar]
  73. Jantzen H. M., Admon A., Bell S. P., Tjian R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature. 1990 Apr 26;344(6269):830–836. doi: 10.1038/344830a0. [DOI] [PubMed] [Google Scholar]
  74. Jarrous N., Reiner R., Wesolowski D., Mann H., Guerrier-Takada C., Altman S. Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. RNA. 2001 Aug;7(8):1153–1164. doi: 10.1017/s1355838201010469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Jarrous N., Wolenski J. S., Wesolowski D., Lee C., Altman S. Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol. 1999 Aug 9;146(3):559–572. doi: 10.1083/jcb.146.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Jeffrey I. W., Kadereit S., Meurs E. F., Metzger T., Bachmann M., Schwemmle M., Hovanessian A. G., Clemens M. J. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp Cell Res. 1995 May;218(1):17–27. doi: 10.1006/excr.1995.1126. [DOI] [PubMed] [Google Scholar]
  77. Kaser A., Bogengruber E., Hallegger M., Doppler E., Lepperdinger G., Jantsch M., Breitenbach M., Kreil G. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits. Biol Chem. 2001 Dec;382(12):1637–1647. doi: 10.1515/BC.2001.199. [DOI] [PubMed] [Google Scholar]
  78. Kaul S. C., Kawai R., Nomura H., Mitsui Y., Reddel R. R., Wadhwa R. Identification of a 55-kDa ezrin-related protein that induces cytoskeletal changes and localizes to the nucleolus. Exp Cell Res. 1999 Jul 10;250(1):51–61. doi: 10.1006/excr.1999.4491. [DOI] [PubMed] [Google Scholar]
  79. Kiefer P., Dickson C. Nucleolar association of fibroblast growth factor 3 via specific sequence motifs has inhibitory effects on cell growth. Mol Cell Biol. 1995 Aug;15(8):4364–4374. doi: 10.1128/mcb.15.8.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Knauf J. A., Pendergrass S. H., Marrone B. L., Strniste G. F., MacInnes M. A., Park M. S. Multiple nuclear localization signals in XPG nuclease. Mutat Res. 1996 May 15;363(1):67–75. doi: 10.1016/0921-8777(95)00062-3. [DOI] [PubMed] [Google Scholar]
  81. Kotani H., Ito M., Hamaguchi T., Ichikawa K., Nakano T., Shima H., Nagao M., Ohta N., Furuichi Y., Takahashi T. The delta isoform of protein phosphatase type 1 is localized in nucleolus and dephosphorylates nucleolar phosphoproteins. Biochem Biophys Res Commun. 1998 Aug 10;249(1):292–296. doi: 10.1006/bbrc.1998.9126. [DOI] [PubMed] [Google Scholar]
  82. Kreivi J. P., Trinkle-Mulcahy L., Lyon C. E., Morrice N. A., Cohen P., Lamond A. I. Purification and characterisation of p99, a nuclear modulator of protein phosphatase 1 activity. FEBS Lett. 1997 Dec 22;420(1):57–62. doi: 10.1016/s0014-5793(97)01485-3. [DOI] [PubMed] [Google Scholar]
  83. Kurdi-Haidar B., Hom D. K., Flittner D. E., Heath D., Fink L., Naredi P., Howell S. B. Dual cytoplasmic and nuclear distribution of the novel arsenite-stimulated human ATPase (hASNA-I). J Cell Biochem. 1998 Oct 1;71(1):1–10. [PubMed] [Google Scholar]
  84. Lai Ming-Chih, Kuo Hao-Wei, Chang Wen-Cheng, Tarn Woan-Yuh. A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 2003 Mar 17;22(6):1359–1369. doi: 10.1093/emboj/cdg126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Lash A. E., Tolstoshev C. M., Wagner L., Schuler G. D., Strausberg R. L., Riggins G. J., Altschul S. F. SAGEmap: a public gene expression resource. Genome Res. 2000 Jul;10(7):1051–1060. doi: 10.1101/gr.10.7.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Le S., Sternglanz R., Greider C. W. Identification of two RNA-binding proteins associated with human telomerase RNA. Mol Biol Cell. 2000 Mar;11(3):999–1010. doi: 10.1091/mbc.11.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Lee S. G., Lee I., Park S. H., Kang C., Song K. Identification and characterization of a human cDNA homologous to yeast SKI2. Genomics. 1995 Feb 10;25(3):660–666. doi: 10.1016/0888-7543(95)80008-a. [DOI] [PubMed] [Google Scholar]
  88. Leung Anthony K. L., Lamond Angus I. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol. 2002 May 13;157(4):615–629. doi: 10.1083/jcb.200201120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Lin C. W., Darzynkiewicz Z., Li X., Traganos F., Bedner E., Tse-Dinh Y. C. Differential expression of human topoisomerase IIIalpha during the cell cycle progression in HL-60 leukemia cells and human peripheral blood lymphocytes. Exp Cell Res. 2000 Apr 10;256(1):225–236. doi: 10.1006/excr.1999.4778. [DOI] [PubMed] [Google Scholar]
  90. Lin C. Y., Huang P. H., Liao W. L., Cheng H. J., Huang C. F., Kuo J. C., Patton W. A., Massenburg D., Moss J., Lee F. J. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem. 2000 Dec 1;275(48):37815–37823. doi: 10.1074/jbc.M002470200. [DOI] [PubMed] [Google Scholar]
  91. Lindström M. S., Klangby U., Inoue R., Pisa P., Wiman K. G., Asker C. E. Immunolocalization of human p14(ARF) to the granular component of the interphase nucleolus. Exp Cell Res. 2000 May 1;256(2):400–410. doi: 10.1006/excr.2000.4854. [DOI] [PubMed] [Google Scholar]
  92. Lyman S. K., Gerace L., Baserga S. J. Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. RNA. 1999 Dec;5(12):1597–1604. doi: 10.1017/s1355838299991288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Lyon C. E., Bohmann K., Sleeman J., Lamond A. I. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res. 1997 Jan 10;230(1):84–93. doi: 10.1006/excr.1996.3380. [DOI] [PubMed] [Google Scholar]
  94. Maggio R. Progress report on the characterization of nucleoli from guinea pig liver. Natl Cancer Inst Monogr. 1966 Dec;23:213–222. [PubMed] [Google Scholar]
  95. Magoulas C., Fried M. Isolation and genomic analysis of the human surf-6 gene: a member of the Surfeit locus. Gene. 2000 Feb 8;243(1-2):115–123. doi: 10.1016/s0378-1119(99)00551-x. [DOI] [PubMed] [Google Scholar]
  96. Makarov Evgeny M., Makarova Olga V., Urlaub Henning, Gentzel Marc, Will Cindy L., Wilm Matthias, Lührmann Reinhard. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science. 2002 Oct 31;298(5601):2205–2208. doi: 10.1126/science.1077783. [DOI] [PubMed] [Google Scholar]
  97. Malatesta M., Zancanaro C., Martin T. E., Chan E. K., Amalric F., Lührmann R., Vogel P., Fakan S. Is the coiled body involved in nucleolar functions? Exp Cell Res. 1994 Apr;211(2):415–419. doi: 10.1006/excr.1994.1106. [DOI] [PubMed] [Google Scholar]
  98. Marciniak R. A., Lombard D. B., Johnson F. B., Guarente L. Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6887–6892. doi: 10.1073/pnas.95.12.6887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. McBride A. E., Silver P. A. State of the arg: protein methylation at arginine comes of age. Cell. 2001 Jul 13;106(1):5–8. doi: 10.1016/s0092-8674(01)00423-8. [DOI] [PubMed] [Google Scholar]
  100. McNeil S., Guo B., Stein J. L., Lian J. B., Bushmeyer S., Seto E., Atchison M. L., Penman S., van Wijnen A. J., Stein G. S. Targeting of the YY1 transcription factor to the nucleolus and the nuclear matrix in situ: the C-terminus is a principal determinant for nuclear trafficking. J Cell Biochem. 1998 Mar 15;68(4):500–510. [PubMed] [Google Scholar]
  101. Michael W. M., Dreyfuss G. Distinct domains in ribosomal protein L5 mediate 5 S rRNA binding and nucleolar localization. J Biol Chem. 1996 May 10;271(19):11571–11574. doi: 10.1074/jbc.271.19.11571. [DOI] [PubMed] [Google Scholar]
  102. Milarski K. L., Welch W. J., Morimoto R. I. Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol. 1989 Feb;108(2):413–423. doi: 10.1083/jcb.108.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mintz P. J., Patterson S. D., Neuwald A. F., Spahr C. S., Spector D. L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999 Aug 2;18(15):4308–4320. doi: 10.1093/emboj/18.15.4308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Misteli T. Protein dynamics: implications for nuclear architecture and gene expression. Science. 2001 Feb 2;291(5505):843–847. doi: 10.1126/science.291.5505.843. [DOI] [PubMed] [Google Scholar]
  105. Modrell B., McDonald V. L., Shoyab M. The interaction of amphiregulin with nuclei and putative nuclear localization sequence binding proteins. Growth Factors. 1992;7(4):305–314. doi: 10.3109/08977199209046413. [DOI] [PubMed] [Google Scholar]
  106. Moroianu J., Riordan J. F. Identification of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1765–1772. doi: 10.1006/bbrc.1994.2391. [DOI] [PubMed] [Google Scholar]
  107. Moss Tom, Stefanovsky Victor Y. At the center of eukaryotic life. Cell. 2002 May 31;109(5):545–548. doi: 10.1016/s0092-8674(02)00761-4. [DOI] [PubMed] [Google Scholar]
  108. Munnia A., Schütz N., Romeike B. F., Maldener E., Glass B., Maas R., Nastainczyk W., Feiden W., Fischer U., Meese E. Expression, cellular distribution and protein binding of the glioma amplified sequence (GAS41), a highly conserved putative transcription factor. Oncogene. 2001 Aug 9;20(35):4853–4863. doi: 10.1038/sj.onc.1204650. [DOI] [PubMed] [Google Scholar]
  109. Neubauer G., King A., Rappsilber J., Calvio C., Watson M., Ajuh P., Sleeman J., Lamond A., Mann M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998 Sep;20(1):46–50. doi: 10.1038/1700. [DOI] [PubMed] [Google Scholar]
  110. Nicol S. M., Causevic M., Prescott A. R., Fuller-Pace F. V. The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp Cell Res. 2000 Jun 15;257(2):272–280. doi: 10.1006/excr.2000.4886. [DOI] [PubMed] [Google Scholar]
  111. Nishida T., Tanaka H., Yasuda H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem. 2000 Nov;267(21):6423–6427. doi: 10.1046/j.1432-1327.2000.01729.x. [DOI] [PubMed] [Google Scholar]
  112. Nissan Tracy A., Bassler Jochen, Petfalski Elisabeth, Tollervey David, Hurt Ed. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 2002 Oct 15;21(20):5539–5547. doi: 10.1093/emboj/cdf547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Ochs R. L., Stein T. W., Jr, Chan E. K., Ruutu M., Tan E. M. cDNA cloning and characterization of a novel nucleolar protein. Mol Biol Cell. 1996 Jul;7(7):1015–1024. doi: 10.1091/mbc.7.7.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Ochs R. L., Stein T. W., Jr, Tan E. M. Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci. 1994 Feb;107(Pt 2):385–399. doi: 10.1242/jcs.107.2.385. [DOI] [PubMed] [Google Scholar]
  115. Olson M. O., Dundr M., Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 2000 May;10(5):189–196. doi: 10.1016/s0962-8924(00)01738-4. [DOI] [PubMed] [Google Scholar]
  116. Opas M., Dziak E., Fliegel L., Michalak M. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol. 1991 Oct;149(1):160–171. doi: 10.1002/jcp.1041490120. [DOI] [PubMed] [Google Scholar]
  117. Ou J. H., Yen T. S., Wang Y. F., Kam W. K., Rutter W. J. Cloning and characterization of a human ribosomal protein gene with enhanced expression in fetal and neoplastic cells. Nucleic Acids Res. 1987 Nov 11;15(21):8919–8934. doi: 10.1093/nar/15.21.8919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Owens-Grillo J. K., Czar M. J., Hutchison K. A., Hoffmann K., Perdew G. H., Pratt W. B. A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J Biol Chem. 1996 Jun 7;271(23):13468–13475. doi: 10.1074/jbc.271.23.13468. [DOI] [PubMed] [Google Scholar]
  119. Pai C. Y., Chen H. K., Sheu H. L., Yeh N. H. Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. J Cell Sci. 1995 May;108(Pt 5):1911–1920. doi: 10.1242/jcs.108.5.1911. [DOI] [PubMed] [Google Scholar]
  120. Parsell D. A., Sanchez Y., Stitzel J. D., Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature. 1991 Sep 19;353(6341):270–273. doi: 10.1038/353270a0. [DOI] [PubMed] [Google Scholar]
  121. Payen E., Verkerk T., Michalovich D., Dreyer S. D., Winterpacht A., Lee B., De Zeeuw C. I., Grosveld F., Galjart N. The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains. J Biol Chem. 1998 Apr 10;273(15):9099–9109. doi: 10.1074/jbc.273.15.9099. [DOI] [PubMed] [Google Scholar]
  122. Pederson T. Is the nucleus in need of translation? Trends Cell Biol. 2001 Oct;11(10):395–397. doi: 10.1016/s0962-8924(01)02105-5. [DOI] [PubMed] [Google Scholar]
  123. Pederson T., Politz J. C. The nucleolus and the four ribonucleoproteins of translation. J Cell Biol. 2000 Mar 20;148(6):1091–1095. doi: 10.1083/jcb.148.6.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998 Sep 1;26(17):3871–3876. doi: 10.1093/nar/26.17.3871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Pellegrini M., Marcotte E. M., Thompson M. J., Eisenberg D., Yeates T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4285–4288. doi: 10.1073/pnas.96.8.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Peter M., Nakagawa J., Dorée M., Labbé J. C., Nigg E. A. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell. 1990 Mar 9;60(5):791–801. doi: 10.1016/0092-8674(90)90093-t. [DOI] [PubMed] [Google Scholar]
  127. Pintucci G., Quarto N., Rifkin D. B. Methylation of high molecular weight fibroblast growth factor-2 determines post-translational increases in molecular weight and affects its intracellular distribution. Mol Biol Cell. 1996 Aug;7(8):1249–1258. doi: 10.1091/mbc.7.8.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Platani M., Goldberg I., Swedlow J. R., Lamond A. I. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol. 2000 Dec 25;151(7):1561–1574. doi: 10.1083/jcb.151.7.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Pluk H., Soffner J., Lührmann R., van Venrooij W. J. cDNA cloning and characterization of the human U3 small nucleolar ribonucleoprotein complex-associated 55-kilodalton protein. Mol Cell Biol. 1998 Jan;18(1):488–498. doi: 10.1128/mcb.18.1.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Pluk H., van Eenennaam H., Rutjes S. A., Pruijn G. J., van Venrooij W. J. RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. RNA. 1999 Apr;5(4):512–524. doi: 10.1017/s1355838299982079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Pluta A. F., Earnshaw W. C. Specific interaction between human kinetochore protein CENP-C and a nucleolar transcriptional regulator. J Biol Chem. 1996 Aug 2;271(31):18767–18774. doi: 10.1074/jbc.271.31.18767. [DOI] [PubMed] [Google Scholar]
  132. Politz J. C., Yarovoi S., Kilroy S. M., Gowda K., Zwieb C., Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):55–60. doi: 10.1073/pnas.97.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Politz Joan C., Lewandowski Laura B., Pederson Thoru. Signal recognition particle RNA localization within the nucleolus differs from the classical sites of ribosome synthesis. J Cell Biol. 2002 Nov 11;159(3):411–418. doi: 10.1083/jcb.200208037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Racevskis J., Dill A., Stockert R., Fineberg S. A. Cloning of a novel nucleolar guanosine 5'-triphosphate binding protein autoantigen from a breast tumor. Cell Growth Differ. 1996 Feb;7(2):271–280. [PubMed] [Google Scholar]
  135. Rappsilber Juri, Ryder Ursula, Lamond Angus I., Mann Matthias. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2002 Aug;12(8):1231–1245. doi: 10.1101/gr.473902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Reits E. A., Neefjes J. J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol. 2001 Jun;3(6):E145–E147. doi: 10.1038/35078615. [DOI] [PubMed] [Google Scholar]
  137. Ren Y., Busch R. K., Perlaky L., Busch H. The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur J Biochem. 1998 May 1;253(3):734–742. doi: 10.1046/j.1432-1327.1998.2530734.x. [DOI] [PubMed] [Google Scholar]
  138. Rizos H., Darmanian A. P., Mann G. J., Kefford R. F. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene. 2000 Jun 15;19(26):2978–2985. doi: 10.1038/sj.onc.1203629. [DOI] [PubMed] [Google Scholar]
  139. Sanz M. M., Proytcheva M., Ellis N. A., Holloman W. K., German J. BLM, the Bloom's syndrome protein, varies during the cell cycle in its amount, distribution, and co-localization with other nuclear proteins. Cytogenet Cell Genet. 2000;91(1-4):217–223. doi: 10.1159/000056848. [DOI] [PubMed] [Google Scholar]
  140. Savino T. M., Bastos R., Jansen E., Hernandez-Verdun D. The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci. 1999 Jun;112(Pt 12):1889–1900. doi: 10.1242/jcs.112.12.1889. [DOI] [PubMed] [Google Scholar]
  141. Scheer U., Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol. 1999 Jun;11(3):385–390. doi: 10.1016/S0955-0674(99)80054-4. [DOI] [PubMed] [Google Scholar]
  142. Scherl Alexander, Couté Yohann, Déon Catherine, Callé Aleth, Kindbeiter Karine, Sanchez Jean-Charles, Greco Anna, Hochstrasser Denis, Diaz Jean-Jacques. Functional proteomic analysis of human nucleolus. Mol Biol Cell. 2002 Nov;13(11):4100–4109. doi: 10.1091/mbc.E02-05-0271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Schneiter R., Kadowaki T., Tartakoff A. M. mRNA transport in yeast: time to reinvestigate the functions of the nucleolus. Mol Biol Cell. 1995 Apr;6(4):357–370. doi: 10.1091/mbc.6.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Schonk D. M., Kuijpers H. J., van Drunen E., van Dalen C. H., Geurts van Kessel A. H., Verheijen R., Ramaekers F. C. Assignment of the gene(s) involved in the expression of the proliferation-related Ki-67 antigen to human chromosome 10. Hum Genet. 1989 Oct;83(3):297–299. doi: 10.1007/BF00285178. [DOI] [PubMed] [Google Scholar]
  145. Scott M., Boisvert F. M., Vieyra D., Johnston R. N., Bazett-Jones D. P., Riabowol K. UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Res. 2001 May 15;29(10):2052–2058. doi: 10.1093/nar/29.10.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Sleeman J. E., Ajuh P., Lamond A. I. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci. 2001 Dec;114(Pt 24):4407–4419. doi: 10.1242/jcs.114.24.4407. [DOI] [PubMed] [Google Scholar]
  147. Sleeman J. E., Lamond A. I. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol. 1999 Oct 7;9(19):1065–1074. doi: 10.1016/s0960-9822(99)80475-8. [DOI] [PubMed] [Google Scholar]
  148. Sleeman J. E., Lamond A. I. Nuclear organization of pre-mRNA splicing factors. Curr Opin Cell Biol. 1999 Jun;11(3):372–377. doi: 10.1016/S0955-0674(99)80052-0. [DOI] [PubMed] [Google Scholar]
  149. Sleeman J., Lyon C. E., Platani M., Kreivi J. P., Lamond A. I. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp Cell Res. 1998 Sep 15;243(2):290–304. doi: 10.1006/excr.1998.4135. [DOI] [PubMed] [Google Scholar]
  150. Snaar S., Wiesmeijer K., Jochemsen A. G., Tanke H. J., Dirks R. W. Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol. 2000 Oct 30;151(3):653–662. doi: 10.1083/jcb.151.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Stegh A. H., Schickling O., Ehret A., Scaffidi C., Peterhänsel C., Hofmann T. G., Grummt I., Krammer P. H., Peter M. E. DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J. 1998 Oct 15;17(20):5974–5986. doi: 10.1093/emboj/17.20.5974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Stein Lincoln. Creating a bioinformatics nation. Nature. 2002 May 9;417(6885):119–120. doi: 10.1038/417119a. [DOI] [PubMed] [Google Scholar]
  153. Stoss O., Schwaiger F. W., Cooper T. A., Stamm S. Alternative splicing determines the intracellular localization of the novel nuclear protein Nop30 and its interaction with the splicing factor SRp30c. J Biol Chem. 1999 Apr 16;274(16):10951–10962. doi: 10.1074/jbc.274.16.10951. [DOI] [PubMed] [Google Scholar]
  154. Swedlow Jason R., Goldberg Ilya, Brauner Erik, Sorger Peter K. Informatics and quantitative analysis in biological imaging. Science. 2003 Apr 4;300(5616):100–102. doi: 10.1126/science.1082602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Takagi M., Sueishi M., Saiwaki T., Kametaka A., Yoneda Y. A novel nucleolar protein, NIFK, interacts with the forkhead associated domain of Ki-67 antigen in mitosis. J Biol Chem. 2001 May 7;276(27):25386–25391. doi: 10.1074/jbc.M102227200. [DOI] [PubMed] [Google Scholar]
  156. Tamanini F., Kirkpatrick L. L., Schonkeren J., van Unen L., Bontekoe C., Bakker C., Nelson D. L., Galjaard H., Oostra B. A., Hoogeveen A. T. The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins. Hum Mol Genet. 2000 Jun 12;9(10):1487–1493. doi: 10.1093/hmg/9.10.1487. [DOI] [PubMed] [Google Scholar]
  157. Thomson S. R., Johnson S. E. Isolation and characterization of chicken TaxREB107, a putative DNA binding protein abundantly expressed in muscle. Gene. 2001 Oct 31;278(1-2):81–88. doi: 10.1016/s0378-1119(01)00732-6. [DOI] [PubMed] [Google Scholar]
  158. Thébault S., Basbous J., Gay B., Devaux C., Mesnard J. M. Sequence requirement for the nucleolar localization of human I-mfa domain-containing protein (HIC p40). Eur J Cell Biol. 2000 Nov;79(11):834–838. doi: 10.1078/0171-9335-00111. [DOI] [PubMed] [Google Scholar]
  159. Tong Amy Hin Yan, Drees Becky, Nardelli Giuliano, Bader Gary D., Brannetti Barbara, Castagnoli Luisa, Evangelista Marie, Ferracuti Silvia, Nelson Bryce, Paoluzi Serena. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science. 2001 Dec 13;295(5553):321–324. doi: 10.1126/science.1064987. [DOI] [PubMed] [Google Scholar]
  160. Trinkle-Mulcahy L., Sleeman J. E., Lamond A. I. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J Cell Sci. 2001 Dec;114(Pt 23):4219–4228. doi: 10.1242/jcs.114.23.4219. [DOI] [PubMed] [Google Scholar]
  161. Tschochner Herbert, Hurt Ed. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 2003 May;13(5):255–263. doi: 10.1016/s0962-8924(03)00054-0. [DOI] [PubMed] [Google Scholar]
  162. Tyers Mike, Mann Matthias. From genomics to proteomics. Nature. 2003 Mar 13;422(6928):193–197. doi: 10.1038/nature01510. [DOI] [PubMed] [Google Scholar]
  163. Ueki N., Kondo M., Seki N., Yano K., Oda T., Masuho Y., Muramatsu M. NOLP: identification of a novel human nucleolar protein and determination of sequence requirements for its nucleolar localization. Biochem Biophys Res Commun. 1998 Nov 9;252(1):97–102. doi: 10.1006/bbrc.1998.9606. [DOI] [PubMed] [Google Scholar]
  164. Utama Budi, Kennedy Derek, Ru Kelin, Mattick John S. Isolation and characterization of a new nucleolar protein, Nrap, that is conserved from yeast to humans. Genes Cells. 2002 Feb;7(2):115–132. doi: 10.1046/j.1356-9597.2001.00507.x. [DOI] [PubMed] [Google Scholar]
  165. Valdez B. C., Henning D., Busch R. K., Woods K., Flores-Rozas H., Hurwitz J., Perlaky L., Busch H. A nucleolar RNA helicase recognized by autoimmune antibodies from a patient with watermelon stomach disease. Nucleic Acids Res. 1996 Apr 1;24(7):1220–1224. doi: 10.1093/nar/24.7.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Vater C. A., Bartle L. M., Leszyk J. D., Lambert J. M., Goldmacher V. S. Ricin A chain can be chemically cross-linked to the mammalian ribosomal proteins L9 and L10e. J Biol Chem. 1995 May 26;270(21):12933–12940. doi: 10.1074/jbc.270.21.12933. [DOI] [PubMed] [Google Scholar]
  167. Venables J. P., Vernet C., Chew S. L., Elliott D. J., Cowmeadow R. B., Wu J., Cooke H. J., Artzt K., Eperon I. C. T-STAR/ETOILE: a novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis. Hum Mol Genet. 1999 Jun;8(6):959–969. doi: 10.1093/hmg/8.6.959. [DOI] [PubMed] [Google Scholar]
  168. Visintin R., Amon A. The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol. 2000 Jun;12(3):372–377. doi: 10.1016/s0955-0674(00)00102-2. [DOI] [PubMed] [Google Scholar]
  169. Wagner Stefan, Chiosea Simion, Nickerson Jeffrey A. The spatial targeting and nuclear matrix binding domains of SRm160. Proc Natl Acad Sci U S A. 2003 Mar 6;100(6):3269–3274. doi: 10.1073/pnas.0438055100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Warner J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999 Nov;24(11):437–440. doi: 10.1016/s0968-0004(99)01460-7. [DOI] [PubMed] [Google Scholar]
  171. Welsh G. I., Kadereit S., Coccia E. M., Hovanessian A. G., Meurs E. F. Colocalization within the nucleolus of two highly related IFN-induced human nuclear phosphoproteins with nucleolin. Exp Cell Res. 1999 Jul 10;250(1):62–74. doi: 10.1006/excr.1999.4505. [DOI] [PubMed] [Google Scholar]
  172. Westendorf J. M., Konstantinov K. N., Wormsley S., Shu M. D., Matsumoto-Taniura N., Pirollet F., Klier F. G., Gerace L., Baserga S. J. M phase phosphoprotein 10 is a human U3 small nucleolar ribonucleoprotein component. Mol Biol Cell. 1998 Feb;9(2):437–449. doi: 10.1091/mbc.9.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Whitehead C. M., Winkfein R. J., Fritzler M. J., Rattner J. B. ASE-1: a novel protein of the fibrillar centres of the nucleolus and nucleolus organizer region of mitotic chromosomes. Chromosoma. 1997 Dec;106(8):493–502. doi: 10.1007/s004120050271. [DOI] [PubMed] [Google Scholar]
  174. Willemsen R., Bontekoe C., Tamanini F., Galjaard H., Hoogeveen A., Oostra B. Association of FMRP with ribosomal precursor particles in the nucleolus. Biochem Biophys Res Commun. 1996 Aug 5;225(1):27–33. doi: 10.1006/bbrc.1996.1126. [DOI] [PubMed] [Google Scholar]
  175. Williams J. B., Lanahan A. A. A mammalian delayed-early response gene encodes HNP36, a novel, conserved nucleolar protein. Biochem Biophys Res Commun. 1995 Aug 4;213(1):325–333. doi: 10.1006/bbrc.1995.2133. [DOI] [PubMed] [Google Scholar]
  176. Winokur S. T., Shiang R. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus. Hum Mol Genet. 1998 Nov;7(12):1947–1952. doi: 10.1093/hmg/7.12.1947. [DOI] [PubMed] [Google Scholar]
  177. Wu H., Xu H., Miraglia L. J., Crooke S. T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem. 2000 Nov 24;275(47):36957–36965. doi: 10.1074/jbc.M005494200. [DOI] [PubMed] [Google Scholar]
  178. Xu Chong, Henry Pamela A., Setya Amit, Henry Michael F. In vivo analysis of nucleolar proteins modified by the yeast arginine methyltransferase Hmt1/Rmt1p. RNA. 2003 Jun;9(6):746–759. doi: 10.1261/rna.5020803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Yang M., May W. S., Ito T. JAZ requires the double-stranded RNA-binding zinc finger motifs for nuclear localization. J Biol Chem. 1999 Sep 24;274(39):27399–27406. doi: 10.1074/jbc.274.39.27399. [DOI] [PubMed] [Google Scholar]
  180. Yang Yinhua, Chen Yaohui, Zhang Chunyu, Huang Hai, Weissman Sherman M. Nucleolar localization of hTERT protein is associated with telomerase function. Exp Cell Res. 2002 Jul 15;277(2):201–209. doi: 10.1006/excr.2002.5541. [DOI] [PubMed] [Google Scholar]
  181. Yankiwski V., Marciniak R. A., Guarente L., Neff N. F. Nuclear structure in normal and Bloom syndrome cells. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5214–5219. doi: 10.1073/pnas.090525897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Yung B. Y., Bor A. M., Yang Y. H. Immunolocalization of phosphoprotein B23 in proliferating and non-proliferating HeLa cells. Int J Cancer. 1990 Aug 15;46(2):272–275. doi: 10.1002/ijc.2910460222. [DOI] [PubMed] [Google Scholar]
  183. Zhou Zhaolan, Licklider Lawrence J., Gygi Steven P., Reed Robin. Comprehensive proteomic analysis of the human spliceosome. Nature. 2002 Sep 12;419(6903):182–185. doi: 10.1038/nature01031. [DOI] [PubMed] [Google Scholar]
  184. Zhu L., Perlaky L., Henning D., Valdez B. C. Cloning and characterization of a new silver-stainable protein SSP29, a member of the LRR family. Biochem Mol Biol Int. 1997 Aug;42(5):927–935. doi: 10.1080/15216549700203371. [DOI] [PubMed] [Google Scholar]
  185. Zini N., Santi S., Ognibene A., Bavelloni A., Neri L. M., Valmori A., Mariani E., Negri C., Astaldi-Ricotti G. C., Maraldi N. M. Discrete localization of different DNA topoisomerases in HeLa and K562 cell nuclei and subnuclear fractions. Exp Cell Res. 1994 Feb;210(2):336–348. doi: 10.1006/excr.1994.1046. [DOI] [PubMed] [Google Scholar]
  186. Zirwes R. F., Eilbracht J., Kneissel S., Schmidt-Zachmann M. S. A novel helicase-type protein in the nucleolus: protein NOH61. Mol Biol Cell. 2000 Apr;11(4):1153–1167. doi: 10.1091/mbc.11.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. di Padua Mathieu D., Mura C. V., Frado L. L., Woodcock C. L., Stollar B. D. Differing accessibility in chromatin of the antigenic sites of regions 1-58 and 63-125 of histone H2B. J Cell Biol. 1981 Oct;91(1):135–141. doi: 10.1083/jcb.91.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia adjunct for figure 7a
bj3760553add1.swf (8KB, swf)
Multimedia adjunct for figure 7b
bj3760553add2.swf (17.5KB, swf)
Multimedia adjunct for figure 7c
bj3760553add3.swf (5.1KB, swf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES