Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):151–159. doi: 10.1042/BJ20021428

Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.

L Daniel Howell 1, Roy Borchardt 1, Jolanta Kole 1, Andrew M Kaz 1, Christoph Randak 1, Jonathan A Cohn 1
PMCID: PMC1223935  PMID: 14602047

Abstract

Gating of the CFTR Cl- channel is associated with ATP hydrolysis at the nucleotide-binding domains (NBD1, NBD2) and requires PKA (protein kinase A) phosphorylation of the R domain. The manner in which the NBD1, NBD2 and R domains of CFTR (cystic fibrosis transmembrane conductance regulator) interact to achieve a properly regulated ion channel is largely unknown. In this study we used bacterially expressed recombinant proteins to examine interactions between these soluble domains of CFTR in vitro. PKA phosphorylated a fusion protein containing NBD1 and R (NBD1-R-GST) on CFTR residues Ser-660, Ser-700, Ser-712, Ser-737, Ser-768, Ser-795 and Ser-813. Phosphorylation of these serine residues regulated ATP hydrolysis by NBD1-R-GST by increasing the apparent K(m) for ATP (from 70 to 250 microM) and the Hill coefficient (from 1 to 1.7) without changing the V(max). When fusion proteins were photolabelled with 8-azido-[alpha-32P]ATP, PKA phosphorylation increased the apparent k(d) for nucleotide binding and it caused binding to become co-operative. PKA phosphorylation also resulted in dimerization of NBD1-R-GST but not of R-GST, a related fusion protein lacking the NBD1 domain. Finally, an MBP (maltose-binding protein) fusion protein containing the NBD2 domain (NBD2-MBP) associated with and regulated the ATPase activity of PKA-phosphorylated NBD1-R-GST. Thus when the R domain in NBD1-R-GST is phosphorylated by PKA, ATP binding and hydrolysis becomes co-operative and NBD dimerization occurs. These findings suggest that during the activation of native CFTR, phosphorylation of the R domain by PKA can control the ability of the NBD1 domain to hydrolyse ATP and to interact with other NBD domains.

Full Text

The Full Text of this article is available as a PDF (213.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleksandrov L., Mengos A., Chang X., Aleksandrov A., Riordan J. R. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 2001 Jan 29;276(16):12918–12923. doi: 10.1074/jbc.M100515200. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. P., Berger H. A., Rich D. P., Gregory R. J., Smith A. E., Welsh M. J. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell. 1991 Nov 15;67(4):775–784. doi: 10.1016/0092-8674(91)90072-7. [DOI] [PubMed] [Google Scholar]
  3. Annereau J. P., Stoven V., Bontems F., Barthe J., Lenoir G., Blanquet S., Lallemand J. Y. Insight into cystic fibrosis by structural modelling of CFTR first nucleotide binding fold (NBF1). C R Acad Sci III. 1997 Feb;320(2):113–121. doi: 10.1016/s0764-4469(97)85002-0. [DOI] [PubMed] [Google Scholar]
  4. Carson M. R., Travis S. M., Welsh M. J. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem. 1995 Jan 27;270(4):1711–1717. doi: 10.1074/jbc.270.4.1711. [DOI] [PubMed] [Google Scholar]
  5. Chang Steven Y., Di Anke, Naren Anjaparavanda P., Palfrey H. Clive, Kirk Kevin L., Nelson Deborah J. Mechanisms of CFTR regulation by syntaxin 1A and PKA. J Cell Sci. 2002 Feb 15;115(Pt 4):783–791. doi: 10.1242/jcs.115.4.783. [DOI] [PubMed] [Google Scholar]
  6. Chen J-H, Chang X-B, Aleksandrov A. A., Riordan J. R. CFTR is a monomer: biochemical and functional evidence. J Membr Biol. 2002 Jul 1;188(1):55–71. doi: 10.1007/s00232-001-0174-2. [DOI] [PubMed] [Google Scholar]
  7. Cheng S. H., Rich D. P., Marshall J., Gregory R. J., Welsh M. J., Smith A. E. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell. 1991 Sep 6;66(5):1027–1036. doi: 10.1016/0092-8674(91)90446-6. [DOI] [PubMed] [Google Scholar]
  8. Cohn J. A., Nairn A. C., Marino C. R., Melhus O., Kole J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2340–2344. doi: 10.1073/pnas.89.6.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohn J. A., Strong T. V., Picciotto M. R., Nairn A. C., Collins F. S., Fitz J. G. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology. 1993 Dec;105(6):1857–1864. doi: 10.1016/0016-5085(93)91085-v. [DOI] [PubMed] [Google Scholar]
  10. Csanády L., Chan K. W., Seto-Young D., Kopsco D. C., Nairn A. C., Gadsby D. C. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. J Gen Physiol. 2000 Sep;116(3):477–500. doi: 10.1085/jgp.116.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davidson A. L., Laghaeian S. S., Mannering D. E. The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis. J Biol Chem. 1996 Mar 1;271(9):4858–4863. [PubMed] [Google Scholar]
  12. Diederichs K., Diez J., Greller G., Müller C., Breed J., Schnell C., Vonrhein C., Boos W., Welte W. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 2000 Nov 15;19(22):5951–5961. doi: 10.1093/emboj/19.22.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eskandari S., Wright E. M., Kreman M., Starace D. M., Zampighi G. A. Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11235–11240. doi: 10.1073/pnas.95.19.11235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fetsch Erin E., Davidson Amy L. Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A. 2002 Jul 1;99(15):9685–9690. doi: 10.1073/pnas.152204499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gadsby D. C., Nairn A. C. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev. 1999 Jan;79(1 Suppl):S77–S107. doi: 10.1152/physrev.1999.79.1.S77. [DOI] [PubMed] [Google Scholar]
  16. Hopfner K. P., Karcher A., Shin D. S., Craig L., Arthur L. M., Carney J. P., Tainer J. A. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell. 2000 Jun 23;101(7):789–800. doi: 10.1016/s0092-8674(00)80890-9. [DOI] [PubMed] [Google Scholar]
  17. Howell L. D., Borchardt R., Cohn J. A. ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation. Biochem Biophys Res Commun. 2000 May 10;271(2):518–525. doi: 10.1006/bbrc.2000.2659. [DOI] [PubMed] [Google Scholar]
  18. Hunt John F. The perplexing challenges of a pump turned channel. J Physiol. 2002 Mar 1;539(Pt 2):331–331. doi: 10.1113/jphysiol.2002.017210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ikuma M., Welsh M. J. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8675–8680. doi: 10.1073/pnas.140220597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones P. M., George A. M. Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol Lett. 1999 Oct 15;179(2):187–202. doi: 10.1111/j.1574-6968.1999.tb08727.x. [DOI] [PubMed] [Google Scholar]
  21. King S. A., Sorscher E. J. R-domain interactions with distal regions of CFTR lead to phosphorylation and activation. Biochemistry. 2000 Aug 15;39(32):9868–9875. doi: 10.1021/bi992807d. [DOI] [PubMed] [Google Scholar]
  22. Ko Y. H., Pedersen P. L. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol Chem. 1995 Sep 22;270(38):22093–22096. doi: 10.1074/jbc.270.38.22093. [DOI] [PubMed] [Google Scholar]
  23. Li C., Ramjeesingh M., Wang W., Garami E., Hewryk M., Lee D., Rommens J. M., Galley K., Bear C. E. ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1996 Nov 8;271(45):28463–28468. doi: 10.1074/jbc.271.45.28463. [DOI] [PubMed] [Google Scholar]
  24. Liu C. E., Liu P. Q., Ames G. F. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem. 1997 Aug 29;272(35):21883–21891. doi: 10.1074/jbc.272.35.21883. [DOI] [PubMed] [Google Scholar]
  25. Locher Kaspar P., Lee Allen T., Rees Douglas C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 2002 May 10;296(5570):1091–1098. doi: 10.1126/science.1071142. [DOI] [PubMed] [Google Scholar]
  26. Loo T. W., Clarke D. M. Covalent modification of human P-glycoprotein mutants containing a single cysteine in either nucleotide-binding fold abolishes drug-stimulated ATPase activity. J Biol Chem. 1995 Sep 29;270(39):22957–22961. doi: 10.1074/jbc.270.39.22957. [DOI] [PubMed] [Google Scholar]
  27. Lu N. T., Pedersen P. L. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Arch Biochem Biophys. 2000 Mar 1;375(1):7–20. doi: 10.1006/abbi.1999.1656. [DOI] [PubMed] [Google Scholar]
  28. Ma J., Zhao J., Drumm M. L., Xie J., Davis P. B. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem. 1997 Oct 31;272(44):28133–28141. doi: 10.1074/jbc.272.44.28133. [DOI] [PubMed] [Google Scholar]
  29. Marshall J., Fang S., Ostedgaard L. S., O'Riordan C. R., Ferrara D., Amara J. F., Hoppe H., 4th, Scheule R. K., Welsh M. J., Smith A. E. Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro. J Biol Chem. 1994 Jan 28;269(4):2987–2995. [PubMed] [Google Scholar]
  30. Moody Jonathan E., Millen Linda, Binns Derk, Hunt John F., Thomas Philip J. Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem. 2002 Apr 18;277(24):21111–21114. doi: 10.1074/jbc.C200228200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neville D. C., Rozanas C. R., Tulk B. M., Townsend R. R., Verkman A. S. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Biochemistry. 1998 Feb 24;37(8):2401–2409. doi: 10.1021/bi972021k. [DOI] [PubMed] [Google Scholar]
  32. Ostedgaard L. S., Rich D. P., DeBerg L. G., Welsh M. J. Association of domains within the cystic fibrosis transmembrane conductance regulator. Biochemistry. 1997 Feb 11;36(6):1287–1294. doi: 10.1021/bi962174s. [DOI] [PubMed] [Google Scholar]
  33. Peters K. W., Qi J., Watkins S. C., Frizzell R. A. Mechanisms underlying regulated CFTR trafficking. Med Clin North Am. 2000 May;84(3):633-40, ix-x. doi: 10.1016/s0025-7125(05)70246-7. [DOI] [PubMed] [Google Scholar]
  34. Picciotto M. R., Cohn J. A., Bertuzzi G., Greengard P., Nairn A. C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 Jun 25;267(18):12742–12752. [PubMed] [Google Scholar]
  35. Pollet J. F., Van Geffel J., Van Stevens E., Van Geffel R., Beauwens R., Bollen A., Jacobs P. Expression and intracellular processing of chimeric and mutant CFTR molecules. Biochim Biophys Acta. 2000 Jan 3;1500(1):59–69. doi: 10.1016/s0925-4439(99)00088-5. [DOI] [PubMed] [Google Scholar]
  36. Powe Allan C., Jr, Al-Nakkash Layla, Li Min, Hwang Tzyh-Chang. Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains. J Physiol. 2002 Mar 1;539(Pt 2):333–346. doi: 10.1113/jphysiol.2001.013162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Raghuram V., Mak D. O., Foskett J. K. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction. Proc Natl Acad Sci U S A. 2001 Jan 23;98(3):1300–1305. doi: 10.1073/pnas.031538898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ramjeesingh M., Li C., Garami E., Huan L. J., Galley K., Wang Y., Bear C. E. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Biochemistry. 1999 Feb 2;38(5):1463–1468. doi: 10.1021/bi982243y. [DOI] [PubMed] [Google Scholar]
  39. Ramjeesingh M., Li C., Kogan I., Wang Y., Huan L. J., Bear C. E. A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator. Biochemistry. 2001 Sep 4;40(35):10700–10706. doi: 10.1021/bi0108195. [DOI] [PubMed] [Google Scholar]
  40. Randak C., Neth P., Auerswald E. A., Eckerskorn C., Assfalg-Machleidt I., Machleidt W. A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett. 1997 Jun 30;410(2-3):180–186. doi: 10.1016/s0014-5793(97)00574-7. [DOI] [PubMed] [Google Scholar]
  41. Rao U. S. Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. J Biol Chem. 1995 Mar 24;270(12):6686–6690. [PubMed] [Google Scholar]
  42. Rich D. P., Berger H. A., Cheng S. H., Travis S. M., Saxena M., Smith A. E., Welsh M. J. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J Biol Chem. 1993 Sep 25;268(27):20259–20267. [PubMed] [Google Scholar]
  43. Smith Paul C., Karpowich Nathan, Millen Linda, Moody Jonathan E., Rosen Jane, Thomas Philip J., Hunt John F. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell. 2002 Jul;10(1):139–149. doi: 10.1016/s1097-2765(02)00576-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tudyka T., Skerra A. Glutathione S-transferase can be used as a C-terminal, enzymatically active dimerization module for a recombinant protease inhibitor, and functionally secreted into the periplasm of Escherichia coli. Protein Sci. 1997 Oct;6(10):2180–2187. doi: 10.1002/pro.5560061012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vergani Paola, Nairn Angus C., Gadsby David C. On the mechanism of MgATP-dependent gating of CFTR Cl- channels. J Gen Physiol. 2003 Jan;121(1):17–36. doi: 10.1085/jgp.20028673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang S., Yue H., Derin R. B., Guggino W. B., Li M. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell. 2000 Sep 29;103(1):169–179. doi: 10.1016/s0092-8674(00)00096-9. [DOI] [PubMed] [Google Scholar]
  47. Wang Wenlan, He Zhaoping, O'Shaughnessy Thomas J., Rux John, Reenstra William W. Domain-domain associations in cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol. 2002 May;282(5):C1170–C1180. doi: 10.1152/ajpcell.00337.2001. [DOI] [PubMed] [Google Scholar]
  48. Wilkinson D. J., Strong T. V., Mansoura M. K., Wood D. L., Smith S. S., Collins F. S., Dawson D. C. CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am J Physiol. 1997 Jul;273(1 Pt 1):L127–L133. doi: 10.1152/ajplung.1997.273.1.L127. [DOI] [PubMed] [Google Scholar]
  49. Winter M. C., Welsh M. J. Stimulation of CFTR activity by its phosphorylated R domain. Nature. 1997 Sep 18;389(6648):294–296. doi: 10.1038/38514. [DOI] [PubMed] [Google Scholar]
  50. Yaffe M. B., Elia A. E. Phosphoserine/threonine-binding domains. Curr Opin Cell Biol. 2001 Apr;13(2):131–138. doi: 10.1016/s0955-0674(00)00189-7. [DOI] [PubMed] [Google Scholar]
  51. Zeltwanger S., Wang F., Wang G. T., Gillis K. D., Hwang T. C. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J Gen Physiol. 1999 Apr;113(4):541–554. doi: 10.1085/jgp.113.4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zerhusen B., Zhao J., Xie J., Davis P. B., Ma J. A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. J Biol Chem. 1999 Mar 19;274(12):7627–7630. doi: 10.1074/jbc.274.12.7627. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES