Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):273–282. doi: 10.1042/BJ20031633

Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays.

M Satish Kumar 1, P Yadagiri Reddy 1, P Anil Kumar 1, Ira Surolia 1, G Bhanuprakash Reddy 1
PMCID: PMC1224074  PMID: 14711370

Abstract

Alpha-crystallin is a member of the small heat-shock protein family and functions like a molecular chaperone, and may thus help in maintaining the transparency of the eye lens by protecting the lens proteins from various stress conditions. Non-enzymic glycation of long-lived proteins has been implicated in several age- and diabetes-related complications, including cataract. Dicarbonyl compounds such as methylglyoxal and glyoxal have been identified as the predominant source for the formation of advanced glycation end-products in various tissues including the lens. We have investigated the effect of non-enzymic browning of alpha-crystallin by reactive dicarbonyls on its molecular chaperone-like function. Non-enzymic browning of bovine alpha-crystallin in vitro caused, along with altered secondary and tertiary structures, cross-linking and high-molecular-mass aggregation. Notwithstanding these structural changes, methylglyoxal- and glyoxal-modified alpha-crystallin showed enhanced anti-aggregation activity in various in vitro aggregation assays. Paradoxically, increased chaperone-like activity of modified alpha-crystallin was not associated with increased surface hydrophobicity and rather showed less 8-anilinonaphthalene-l-sulphonic acid binding. In contrast, the chaperone-like function of modified alpha-crystallin was found to be reduced in assays that monitor the prevention of enzyme inactivation by UV-B and heat. Moreover, incubation of bovine lens with methylglyoxal in organ culture resulted in cataract formation with accumulation of advanced glycation end-products and recovery of alpha-crystallin in high proportions in the insoluble fraction. Furthermore, soluble alpha-crystallin from methylglyoxal-treated lenses showed decreased chaperone-like activity. Thus, in addition to describing the effects of methylglyoxal and glyoxal on structure and chaperone-like activity, our studies also bring out an important caveat of aggregation assays in the context of the chaperone function of alpha-crystallin.

Full Text

The Full Text of this article is available as a PDF (247.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M. U., Brinkmann Frye E., Degenhardt T. P., Thorpe S. R., Baynes J. W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324(Pt 2):565–570. doi: 10.1042/bj3240565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed Naila, Thornalley Paul J., Dawczynski Jens, Franke Sybille, Strobel Juergen, Stein Günter, Haik George M. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5287–5292. doi: 10.1167/iovs.03-0573. [DOI] [PubMed] [Google Scholar]
  3. Akhand A. A., Hossain K., Mitsui H., Kato M., Miyata T., Inagi R., Du J., Takeda K., Kawamoto Y., Suzuki H. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med. 2001 Jul 1;31(1):20–30. doi: 10.1016/s0891-5849(01)00550-0. [DOI] [PubMed] [Google Scholar]
  4. Akhtar N. J., Sun T. X., Liang J. J. Conformational study of N(epsilon)-(carboxymethyl)lysine adducts of recombinant alpha-crystallins. Curr Eye Res. 1999 Apr;18(4):270–276. doi: 10.1076/ceyr.18.4.270.5364. [DOI] [PubMed] [Google Scholar]
  5. Andley U. P., Song Z., Wawrousek E. F., Fleming T. P., Bassnett S. Differential protective activity of alpha A- and alphaB-crystallin in lens epithelial cells. J Biol Chem. 2000 Nov 24;275(47):36823–36831. doi: 10.1074/jbc.M004233200. [DOI] [PubMed] [Google Scholar]
  6. Baynes J. W., Watkins N. G., Fisher C. I., Hull C. J., Patrick J. S., Ahmed M. U., Dunn J. A., Thorpe S. R. The Amadori product on protein: structure and reactions. Prog Clin Biol Res. 1989;304:43–67. [PubMed] [Google Scholar]
  7. Beswick H. T., Harding J. J. Conformational changes induced in lens alpha- and gamma-crystallins by modification with glucose 6-phosphate. Implications for cataract. Biochem J. 1987 Sep 15;246(3):761–769. doi: 10.1042/bj2460761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bhattacharyya J., Das K. P. Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein. J Biol Chem. 1999 May 28;274(22):15505–15509. doi: 10.1074/jbc.274.22.15505. [DOI] [PubMed] [Google Scholar]
  9. Bhattacharyya Jaya, Srinivas V., Sharma K. Krishna. Evaluation of hydrophobicity versus chaperonelike activity of bovine alphaA- and alphaB-crystallin. J Protein Chem. 2002 Jan;21(1):65–71. doi: 10.1023/a:1014187300930. [DOI] [PubMed] [Google Scholar]
  10. Brady J. P., Garland D. L., Green D. E., Tamm E. R., Giblin F. J., Wawrousek E. F. AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci. 2001 Nov;42(12):2924–2934. [PubMed] [Google Scholar]
  11. Brady J. P., Garland D., Duglas-Tabor Y., Robison W. G., Jr, Groome A., Wawrousek E. F. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):884–889. doi: 10.1073/pnas.94.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chellan P., Nagaraj R. H. Protein crosslinking by the Maillard reaction: dicarbonyl-derived imidazolium crosslinks in aging and diabetes. Arch Biochem Biophys. 1999 Aug 1;368(1):98–104. doi: 10.1006/abbi.1999.1291. [DOI] [PubMed] [Google Scholar]
  13. Cherian M., Abraham E. C. Decreased molecular chaperone property of alpha-crystallins due to posttranslational modifications. Biochem Biophys Res Commun. 1995 Mar 17;208(2):675–679. doi: 10.1006/bbrc.1995.1391. [DOI] [PubMed] [Google Scholar]
  14. Crabbe M. J. Cataract as a conformational disease--the Maillard reaction, alpha-crystallin and chemotherapy. Cell Mol Biol (Noisy-le-grand) 1998 Nov;44(7):1047–1050. [PubMed] [Google Scholar]
  15. Das K. P., Surewicz W. K. Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett. 1995 Aug 7;369(2-3):321–325. doi: 10.1016/0014-5793(95)00775-5. [DOI] [PubMed] [Google Scholar]
  16. Derham Barry K., Harding John J. Effects of modifications of alpha-crystallin on its chaperone and other properties. Biochem J. 2002 Jun 15;364(Pt 3):711–717. doi: 10.1042/BJ20011512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dyer D. G., Dunn J. A., Thorpe S. R., Bailie K. E., Lyons T. J., McCance D. R., Baynes J. W. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993 Jun;91(6):2463–2469. doi: 10.1172/JCI116481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ehrnsperger M., Gräber S., Gaestel M., Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 1997 Jan 15;16(2):221–229. doi: 10.1093/emboj/16.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ehrnsperger M., Lilie H., Gaestel M., Buchner J. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem. 1999 May 21;274(21):14867–14874. doi: 10.1074/jbc.274.21.14867. [DOI] [PubMed] [Google Scholar]
  20. Groenen P. J., Merck K. B., de Jong W. W., Bloemendal H. Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem. 1994 Oct 1;225(1):1–19. doi: 10.1111/j.1432-1033.1994.00001.x. [DOI] [PubMed] [Google Scholar]
  21. Hess J. F., FitzGerald P. G. Protection of a restriction enzyme from heat inactivation by [alpha]-crystallin. Mol Vis. 1998 Dec 15;4:29–29. [PubMed] [Google Scholar]
  22. Hook D. W., Harding J. J. Protection of enzymes by alpha-crystallin acting as a molecular chaperone. Int J Biol Macromol. 1998 May-Jun;22(3-4):295–306. doi: 10.1016/s0141-8130(98)00027-0. [DOI] [PubMed] [Google Scholar]
  23. Horwitz Joseph. Alpha-crystallin. Exp Eye Res. 2003 Feb;76(2):145–153. doi: 10.1016/s0014-4835(02)00278-6. [DOI] [PubMed] [Google Scholar]
  24. Kumar L. V., Rao C. M. Domain swapping in human alpha A and alpha B crystallins affects oligomerization and enhances chaperone-like activity. J Biol Chem. 2000 Jul 21;275(29):22009–22013. doi: 10.1074/jbc.M003307200. [DOI] [PubMed] [Google Scholar]
  25. Liang J. N., Rossi M. T. In vitro non-enzymatic glycation and formation of browning products in the bovine lens alpha-crystallin. Exp Eye Res. 1990 Apr;50(4):367–371. doi: 10.1016/0014-4835(90)90137-j. [DOI] [PubMed] [Google Scholar]
  26. Lo T. W., Westwood M. E., McLellan A. C., Selwood T., Thornalley P. J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem. 1994 Dec 23;269(51):32299–32305. [PubMed] [Google Scholar]
  27. Lyons T. J., Silvestri G., Dunn J. A., Dyer D. G., Baynes J. W. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes. 1991 Aug;40(8):1010–1015. doi: 10.2337/diab.40.8.1010. [DOI] [PubMed] [Google Scholar]
  28. Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
  29. Muchowski P. J., Clark J. I. ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1004–1009. doi: 10.1073/pnas.95.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nagaraj R. H., Sell D. R., Prabhakaram M., Ortwerth B. J., Monnier V. M. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10257–10261. doi: 10.1073/pnas.88.22.10257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nagaraj R. H., Shipanova I. N., Faust F. M. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J Biol Chem. 1996 Aug 9;271(32):19338–19345. doi: 10.1074/jbc.271.32.19338. [DOI] [PubMed] [Google Scholar]
  32. Nagaraj Ram H., Oya-Ito Tomoko, Padayatti Pius S., Kumar Radhika, Mehta Sachin, West Karen, Levison Bruce, Sun Jian, Crabb John W., Padival Anoop K. Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification. Biochemistry. 2003 Sep 16;42(36):10746–10755. doi: 10.1021/bi034541n. [DOI] [PubMed] [Google Scholar]
  33. Oya T., Hattori N., Mizuno Y., Miyata S., Maeda S., Osawa T., Uchida K. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J Biol Chem. 1999 Jun 25;274(26):18492–18502. doi: 10.1074/jbc.274.26.18492. [DOI] [PubMed] [Google Scholar]
  34. Putilina Tatiana, Skouri-Panet Fériel, Prat Karine, Lubsen Nicolette H., Tardieu Annette. Subunit exchange demonstrates a differential chaperone activity of calf alpha-crystallin toward beta LOW- and individual gamma-crystallins. J Biol Chem. 2003 Jan 31;278(16):13747–13756. doi: 10.1074/jbc.M208157200. [DOI] [PubMed] [Google Scholar]
  35. Raman B., Rao C. M. Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J Biol Chem. 1997 Sep 19;272(38):23559–23564. doi: 10.1074/jbc.272.38.23559. [DOI] [PubMed] [Google Scholar]
  36. Rao C. M., Raman B., Ramakrishna T., Rajaraman K., Ghosh D., Datta S., Trivedi V. D., Sukhaswami M. B. Structural perturbation of alpha-crystallin and its chaperone-like activity. Int J Biol Macromol. 1998 May-Jun;22(3-4):271–281. doi: 10.1016/s0141-8130(98)00025-7. [DOI] [PubMed] [Google Scholar]
  37. Reddy G. B., Das K. P., Petrash J. M., Surewicz W. K. Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins. J Biol Chem. 2000 Feb 18;275(7):4565–4570. doi: 10.1074/jbc.275.7.4565. [DOI] [PubMed] [Google Scholar]
  38. Reddy G. B., Reddy P. Y., Suryanarayana P. alphaA- and alphaB-crystallins protect glucose-6-phosphate dehydrogenase against UVB irradiation-induced inactivation. Biochem Biophys Res Commun. 2001 Apr 6;282(3):712–716. doi: 10.1006/bbrc.2001.4642. [DOI] [PubMed] [Google Scholar]
  39. Reddy G. Bhanuprakash, Narayanan Sriram, Reddy P. Yadagiri, Surolia Ira. Suppression of DTT-induced aggregation of abrin by alphaA- and alphaB-crystallins: a model aggregation assay for alpha-crystallin chaperone activity in vitro. FEBS Lett. 2002 Jul 3;522(1-3):59–64. doi: 10.1016/s0014-5793(02)02884-3. [DOI] [PubMed] [Google Scholar]
  40. Reichard G. A., Jr, Skutches C. L., Hoeldtke R. D., Owen O. E. Acetone metabolism in humans during diabetic ketoacidosis. Diabetes. 1986 Jun;35(6):668–674. doi: 10.2337/diab.35.6.668. [DOI] [PubMed] [Google Scholar]
  41. Riley M. L., Harding J. J. The reaction of methylglyoxal with human and bovine lens proteins. Biochim Biophys Acta. 1995 Jan 25;1270(1):36–43. doi: 10.1016/0925-4439(94)00069-3. [DOI] [PubMed] [Google Scholar]
  42. Santhoshkumar P., Sharma K. K. Analysis of alpha-crystallin chaperone function using restriction enzymes and citrate synthase. Mol Vis. 2001 Jul 26;7:172–177. [PubMed] [Google Scholar]
  43. Shamsi F. A., Sharkey E., Creighton D., Nagaraj R. H. Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp Eye Res. 2000 Mar;70(3):369–380. doi: 10.1006/exer.1999.0800. [DOI] [PubMed] [Google Scholar]
  44. Sharma K. K., Kaur H., Kumar G. S., Kester K. Interaction of 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid with alpha-crystallin. J Biol Chem. 1998 Apr 10;273(15):8965–8970. doi: 10.1074/jbc.273.15.8965. [DOI] [PubMed] [Google Scholar]
  45. Shuvaev V. V., Laffont I., Serot J. M., Fujii J., Taniguchi N., Siest G. Increased protein glycation in cerebrospinal fluid of Alzheimer's disease. Neurobiol Aging. 2001 May-Jun;22(3):397–402. doi: 10.1016/s0197-4580(00)00253-0. [DOI] [PubMed] [Google Scholar]
  46. Stadtman E. R. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  47. Thampi Prajitha, Zarina Shamshad, Abraham Edathara C. alpha-Crystallin chaperone function in diabetic rat and human lenses. Mol Cell Biochem. 2002 Jan;229(1-2):113–118. doi: 10.1023/a:1017980713089. [DOI] [PubMed] [Google Scholar]
  48. Thornalley P. J. The glyoxalase system in health and disease. Mol Aspects Med. 1993;14(4):287–371. doi: 10.1016/0098-2997(93)90002-u. [DOI] [PubMed] [Google Scholar]
  49. Uchida K., Kanematsu M., Sakai K., Matsuda T., Hattori N., Mizuno Y., Suzuki D., Miyata T., Noguchi N., Niki E. Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4882–4887. doi: 10.1073/pnas.95.9.4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zigler J. S., Jr, Hess H. H. Cataracts in the Royal College of Surgeons rat: evidence for initiation by lipid peroxidation products. Exp Eye Res. 1985 Jul;41(1):67–76. doi: 10.1016/0014-4835(85)90095-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES