Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Jul;65(1):499–507. doi: 10.1016/S0006-3495(93)81062-2

Simulations of three-dimensional ciliary beats and cilia interactions.

S Gueron 1, N Liron 1
PMCID: PMC1225742  PMID: 8369453

Abstract

A new set of equations describing the time evolution of torsion and curvature for an inextensible curve is developed. Combined with our recently developed Slender Body Theory approach to such problems, these equations were applied to simulate three-dimensional ciliary beats, while allowing for cilia interactions. The computer animation technique, which was originally designed to display two-dimensional beats, has been enhanced to accommodate the new three-dimensional results.

Full text

PDF
507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum J. J., Hines M. Biophysics of flagellar motility. Q Rev Biophys. 1979 May;12(2):103–180. doi: 10.1017/s0033583500002742. [DOI] [PubMed] [Google Scholar]
  2. Brokaw C. J. Bending moments in free-swimming flagella. J Exp Biol. 1970 Oct;53(2):445–464. doi: 10.1242/jeb.53.2.445. [DOI] [PubMed] [Google Scholar]
  3. Brokaw C. J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J. 1972 May;12(5):564–586. doi: 10.1016/S0006-3495(72)86104-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brokaw C. J. Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Biophys J. 1976 Sep;16(9):1029–1041. doi: 10.1016/S0006-3495(76)85753-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brokaw C. J. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified. Biophys J. 1985 Oct;48(4):633–642. doi: 10.1016/S0006-3495(85)83819-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brokaw C. J., Rintala D. R. Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. J Mechanochem Cell Motil. 1975;3(2):77–86. [PubMed] [Google Scholar]
  7. Brokaw C. J., Rintala D. Computer simulation of flagellar movement. V. oscillation of cross-bridge models with an ATP-concentration-dependent rate function. J Mechanochem Cell Motil. 1977 Sep;4(3):205–232. [PubMed] [Google Scholar]
  8. Gueron S., Liron N. Ciliary motion modeling, and dynamic multicilia interactions. Biophys J. 1992 Oct;63(4):1045–1058. doi: 10.1016/S0006-3495(92)81683-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hines M., Blum J. J. Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Biophys J. 1979 Mar;25(3):421–441. doi: 10.1016/S0006-3495(79)85313-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hines M., Blum J. J. On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model. Biophys J. 1985 May;47(5):705–708. doi: 10.1016/S0006-3495(85)83967-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hines M., Blum J. J. On the contribution of moment-bearing links to bending and twisting in a three-dimensional sliding filament model. Biophys J. 1984 Nov;46(5):559–565. doi: 10.1016/S0006-3495(84)84054-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hines M., Blum J. J. Three-dimensional mechanics of eukaryotic flagella. Biophys J. 1983 Jan;41(1):67–79. doi: 10.1016/S0006-3495(83)84406-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. E., Brokaw C. J. Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. Biophys J. 1979 Jan;25(1):113–127. doi: 10.1016/S0006-3495(79)85281-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Myerscough M. R., Swan M. A. A model for swimming unipolar spirilla. J Theor Biol. 1989 Jul 21;139(2):201–218. doi: 10.1016/s0022-5193(89)80100-6. [DOI] [PubMed] [Google Scholar]
  15. Ramia M. Numerical model for the locomotion of spirilla. Biophys J. 1991 Nov;60(5):1057–1078. doi: 10.1016/S0006-3495(91)82143-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rikmenspoel R. Ciliary contractile model applied to sperm flagellar motion. J Theor Biol. 1982 Jun 21;96(4):617–645. doi: 10.1016/0022-5193(82)90234-x. [DOI] [PubMed] [Google Scholar]
  17. Rikmenspoel R. Contractile events in the cilia of Paramecium, Opalina, Mytilus, and Phragmatopoma. Biophys J. 1976 May;16(5):445–470. doi: 10.1016/S0006-3495(76)85701-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rikmenspoel R., Rudd W. G. The contractile mechanism in cilia. Biophys J. 1973 Sep;13(9):955–993. doi: 10.1016/S0006-3495(73)86037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samuels DC, Donnelly RJ. Sideband instability and recurrence of Kelvin waves on vortex cores. Phys Rev Lett. 1990 Mar 19;64(12):1385–1388. doi: 10.1103/PhysRevLett.64.1385. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES