Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Feb;299:101–116. doi: 10.1113/jphysiol.1980.sp013113

Spontaneous fluctuations of potassium channels in the apical membrane of frog skin.

W Van Driessche, W Zeiske
PMCID: PMC1279213  PMID: 6247479

Abstract

1. The previously demonstrated K+-dependent short-circuit current through the skin of frog species Rana temporaria (Zeiske & Van Driessche, 1979), bathed with mucosal K+- and serosal Na+-Ringer solution, was investigated with current-fluctuation analysis. 2. The current-noise spectra were recorded in the frequency range from 1 to 800 Hz and showed a Lorentzian component with a mean plateau value S0 = (1.50 +/- 0.05).10(-20) A2.s.cm-2 and a corner frequency of fc=(81.0 +/- 3.4)Hz(n=14). 3. S0 increased with mucosal K+ concentration, [K]o, while fc remained almost unchanged. A decrease in S0 was observed when serosal Na+ was replaced by K+. 4. Mucosal Cs+ (10 mM) depressed, reversibly, the K+-dependent current noise to the level of the background noise. Moreover, a linear decrease in fc with increasing Cs+ concentration was observed. 5. Among the other tested alkali cations, Rb+ was the only blocker though less potent than Cs+. Tetraethylammonium, 4-aminopyridine, 2.4.6-triaminopyrimidine and amiloride had no effect. 6. Alterations in the transcellular transport of Na+ contained in a mucosal solution with high [K]o resulted in significant changes in K+ current noise. 7. The current-fluctuation intensities decreased with increasing contact time to high [K]o; these changes were concomitant with the previously reported time dependence of the short-circuit current (Zeiske & Van Driessche, 1979). 8. The K+-dependent fluctuations are thought to originate from K+-selective pathways in the apical cell membranes. The description of the K+-current noise by a single Lorentzian suggests that the "K+ channels" switch randomly between an open and closed state. 9. Assuming a two state model for the channel-kinetics, the single channel current i and the channel density M were calculated as i=(0.37 +/- 0.05)pA and M=(0.53 +/- 0.08) mu-2 (n=13).

Full text

PDF
115

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeFelice L. J. Fluctuation analysis in neurobiology. Int Rev Neurobiol. 1977;20:169–208. doi: 10.1016/s0074-7742(08)60653-4. [DOI] [PubMed] [Google Scholar]
  2. Ehrlich E. N., Crabbé J. The mechanism of action of amipramizide. Pflugers Arch. 1968;302(1):79–96. doi: 10.1007/BF00586783. [DOI] [PubMed] [Google Scholar]
  3. Fishman H. M., Moore L. E., Poussart D. M. Potassium-ion conduction noise in squid axon membrane. J Membr Biol. 1975 Dec 4;24(3-4):305–328. doi: 10.1007/BF01868629. [DOI] [PubMed] [Google Scholar]
  4. Fishman H. M., Poussart D. M., Moore L. E. Noise measurements in squid axon membrane. J Membr Biol. 1975 Dec 4;24(3-4):281–304. doi: 10.1007/BF01868628. [DOI] [PubMed] [Google Scholar]
  5. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Isenberg G. Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflugers Arch. 1976 Sep 30;365(2-3):99–106. doi: 10.1007/BF01067006. [DOI] [PubMed] [Google Scholar]
  7. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  8. Katz U. Changes in ionic conductances and in sensitivity to amiloride during the natural moulting cycle of toad skin (Bufo viridis, L.). J Membr Biol. 1978 Jan 12;38(1-2):1–9. doi: 10.1007/BF01875159. [DOI] [PubMed] [Google Scholar]
  9. Leblanc G. The mechanism of lithium accumulation in the isolated frog skin epithelium. Pflugers Arch. 1972;337(1):1–18. doi: 10.1007/BF00587867. [DOI] [PubMed] [Google Scholar]
  10. Lindemann B., Van Driessche W. Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science. 1977 Jan 21;195(4275):292–294. doi: 10.1126/science.299785. [DOI] [PubMed] [Google Scholar]
  11. MUELLER P. POTASSIUM AND RUBIDIUM EXCHANGE ACROSS THE SURFACE MEMBRANE OF CARDIAC PURKINJE FIBRES. J Physiol. 1965 Apr;177:453–462. doi: 10.1113/jphysiol.1965.sp007604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moreno J. H. Blockage of cation permeability across the tight junctions of gallbladder and other leaky epithelia. Nature. 1974 Sep 13;251(5471):150–151. doi: 10.1038/251150a0. [DOI] [PubMed] [Google Scholar]
  13. Nagel W. Evidence for electrogenic Na transport from the cytoplasmatic tissue pool of frog skin epithelium [proceedings]. J Physiol. 1978 Nov;284:146P–147P. [PubMed] [Google Scholar]
  14. Nielsen R. Effect of amphotericin B on the frog skin in vitro. Evidence for outward active potassium transport across the epithelium. Acta Physiol Scand. 1971 Sep;83(1):106–114. doi: 10.1111/j.1748-1716.1971.tb05056.x. [DOI] [PubMed] [Google Scholar]
  15. Shum W. K., Fanelli G. M., Jr Does intracellular sodium regulate sodium transport across the mucosal surface of frog skin? Biochim Biophys Acta. 1978 Oct 4;512(3):593–597. doi: 10.1016/0005-2736(78)90168-2. [DOI] [PubMed] [Google Scholar]
  16. Ulbricht W. Ionic channels and gating currents in excitable membranes. Annu Rev Biophys Bioeng. 1977;6:7–31. doi: 10.1146/annurev.bb.06.060177.000255. [DOI] [PubMed] [Google Scholar]
  17. Van Driessche W., Gögelein H. Potassium channels in the apical membrane of the toad gallbladder. Nature. 1978 Oct 19;275(5681):665–667. doi: 10.1038/275665a0. [DOI] [PubMed] [Google Scholar]
  18. Van Driessche W., Zeiske W. Fluctuations of the K+-current in the frog skin (Rana temporaria) [proceedings]. Arch Int Physiol Biochim. 1978 Aug;86(3):685–687. [PubMed] [Google Scholar]
  19. Verveen A. A., DeFelice L. J. Membrane noise. Prog Biophys Mol Biol. 1974;28:189–265. doi: 10.1016/0079-6107(74)90019-4. [DOI] [PubMed] [Google Scholar]
  20. Zeiske W., Van Driessche W. Saturable K+ pathway across the outer border of frog skin (rana temporaria): kinetics and inhibition by Cs+ and other cations. J Membr Biol. 1979 May 7;47(1):77–96. doi: 10.1007/BF01869048. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES