Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):568–576. doi: 10.1016/S0006-3495(99)76913-4

Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate.

L S Shlyakhtenko 1, A A Gall 1, J J Weimer 1, D D Hawn 1, Y L Lyubchenko 1
PMCID: PMC1300353  PMID: 10388781

Abstract

A procedure for covalent binding of DNA to a functionalized mica substrate is described. The approach is based on photochemical cross-linking of DNA to immobilized psoralen derivatives. A tetrafluorphenyl (TFP) ester of trimethyl psoralen (trioxalen) was synthesized, and the procedure to immobilize it onto a functionalized aminopropyl mica surface (AP-mica) was developed. DNA molecules were cross-linked to trioxalen moieties by UV irradiation of complexes. The steps of the sample preparation procedure were analyzed with x-ray photoelectron spectroscopy (XPS). Results from XPS show that an AP-mica surface can be formed by vapor phase deposition of silane and that this surface can be derivatized with trioxalen. The derivatized surface is capable of binding of DNA molecules such that, after UV cross-linking, they withstand a thorough rinsing with SDS. Observations with atomic force microscopy showed that derivatized surfaces remain smooth, so DNA molecules are easily visualized. Linear and circular DNA molecules were photochemically immobilized on the surface. The molecules are distributed over the surface uniformly, indicating rather even modification of AP-mica with trioxalen. Generally, the shapes of supercoiled molecules electrostatically immobilized on AP-mica and those photocross-linked on trioxalen-functionalized surfaces remain quite similar. This suggests that UV cross-linking does not induce formation of a noticeable number of single-stranded breaks in DNA molecules.

Full Text

The Full Text of this article is available as a PDF (629.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. J., Dong X. F., O'Neill T. E., Yau P., Kowalczykowski S. C., Gatewood J., Balhorn R., Bradbury E. M. Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. Biochemistry. 1993 Aug 24;32(33):8390–8396. doi: 10.1021/bi00084a002. [DOI] [PubMed] [Google Scholar]
  2. Bezanilla M., Drake B., Nudler E., Kashlev M., Hansma P. K., Hansma H. G. Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J. 1994 Dec;67(6):2454–2459. doi: 10.1016/S0006-3495(94)80733-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brack C. DNA electron microscopy. CRC Crit Rev Biochem. 1981;10(2):113–169. doi: 10.3109/10409238109114551. [DOI] [PubMed] [Google Scholar]
  4. Bustamante C., Rivetti C. Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct. 1996;25:395–429. doi: 10.1146/annurev.bb.25.060196.002143. [DOI] [PubMed] [Google Scholar]
  5. Bustamante C., Vesenka J., Tang C. L., Rees W., Guthold M., Keller R. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry. 1992 Jan 14;31(1):22–26. doi: 10.1021/bi00116a005. [DOI] [PubMed] [Google Scholar]
  6. Chrisey L. A., Lee G. U., O'Ferrall C. E. Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Res. 1996 Aug 1;24(15):3031–3039. doi: 10.1093/nar/24.15.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cimino G. D., Gamper H. B., Isaacs S. T., Hearst J. E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem. 1985;54:1151–1193. doi: 10.1146/annurev.bi.54.070185.005443. [DOI] [PubMed] [Google Scholar]
  8. Gamper H. B., Reed M. W., Cox T., Virosco J. S., Adams A. D., Gall A. A., Scholler J. K., Meyer R. B., Jr Facile preparation of nuclease resistant 3' modified oligodeoxynucleotides. Nucleic Acids Res. 1993 Jan 11;21(1):145–150. doi: 10.1093/nar/21.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansma H. G., Laney D. E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys J. 1996 Apr;70(4):1933–1939. doi: 10.1016/S0006-3495(96)79757-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansma H. G., Vesenka J., Siegerist C., Kelderman G., Morrett H., Sinsheimer R. L., Elings V., Bustamante C., Hansma P. K. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science. 1992 May 22;256(5060):1180–1184. doi: 10.1126/science.256.5060.1180. [DOI] [PubMed] [Google Scholar]
  11. Haselgrübler T., Amerstorfer A., Schindler H., Gruber H. J. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjug Chem. 1995 May-Jun;6(3):242–248. doi: 10.1021/bc00033a002. [DOI] [PubMed] [Google Scholar]
  12. Hegner M., Wagner P., Semenza G. Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett. 1993 Dec 28;336(3):452–456. doi: 10.1016/0014-5793(93)80854-n. [DOI] [PubMed] [Google Scholar]
  13. Herbert A., Schade M., Lowenhaupt K., Alfken J., Schwartz T., Shlyakhtenko L. S., Lyubchenko Y. L., Rich A. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res. 1998 Aug 1;26(15):3486–3493. doi: 10.1093/nar/26.15.3486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  16. Lyubchenko Y. L., Blankenship R. E., Gall A. A., Lindsay S. M., Thiemann O., Simpson L., Shlyakhtenko L. S. Atomic force microscopy of DNA, nucleoproteins and cellular complexes: the use of functionalized substrates. Scanning Microsc Suppl. 1996;10:97–109. [PubMed] [Google Scholar]
  17. Lyubchenko Y. L., Gall A. A., Shlyakhtenko L. S., Harrington R. E., Jacobs B. L., Oden P. I., Lindsay S. M. Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn. 1992 Dec;10(3):589–606. doi: 10.1080/07391102.1992.10508670. [DOI] [PubMed] [Google Scholar]
  18. Lyubchenko Y. L., Jacobs B. L., Lindsay S. M., Stasiak A. Atomic force microscopy of nucleoprotein complexes. Scanning Microsc. 1995 Sep;9(3):705–727. [PubMed] [Google Scholar]
  19. Lyubchenko Y. L., Oden P. I., Lampner D., Lindsay S. M., Dunker K. A. Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucleic Acids Res. 1993 Mar 11;21(5):1117–1123. doi: 10.1093/nar/21.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lyubchenko Y. L., Shlyakhtenko L. S., Aki T., Adhya S. Atomic force microscopic demonstration of DNA looping by GalR and HU. Nucleic Acids Res. 1997 Feb 15;25(4):873–876. doi: 10.1093/nar/25.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lyubchenko Y., Shlyakhtenko L., Harrington R., Oden P., Lindsay S. Atomic force microscopy of long DNA: imaging in air and under water. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2137–2140. doi: 10.1073/pnas.90.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mou J., Czajkowsky D. M., Zhang Y., Shao Z. High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett. 1995 Sep 11;371(3):279–282. doi: 10.1016/0014-5793(95)00906-p. [DOI] [PubMed] [Google Scholar]
  24. Peckler S., Graves B., Kanne D., Rapoport H., Hearst J. E., Kim S. H. Structure of a psoralen-thymine monoadduct formed in photoreaction with DNA. J Mol Biol. 1982 Nov 25;162(1):157–172. doi: 10.1016/0022-2836(82)90166-8. [DOI] [PubMed] [Google Scholar]
  25. Pfannschmidt C., Schaper A., Heim G., Jovin T. M., Langowski J. Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking. Nucleic Acids Res. 1996 May 1;24(9):1702–1709. doi: 10.1093/nar/24.9.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rabke C. E., Wenzler L. A., Beebe T. P., Jr Electron spectroscopy and atomic force microscopy studies of DNA adsorption on mica. Scanning Microsc. 1994;8(3):471–480. [PubMed] [Google Scholar]
  27. Schaper A., Pietrasanta L. I., Jovin T. M. Scanning force microscopy of circular and linear plasmid DNA spread on mica with a quaternary ammonium salt. Nucleic Acids Res. 1993 Dec 25;21(25):6004–6009. doi: 10.1093/nar/21.25.6004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shlyakhtenko L. S., Potaman V. N., Sinden R. R., Lyubchenko Y. L. Structure and dynamics of supercoil-stabilized DNA cruciforms. J Mol Biol. 1998 Jul 3;280(1):61–72. doi: 10.1006/jmbi.1998.1855. [DOI] [PubMed] [Google Scholar]
  29. Sinden R. R., Carlson J. O., Pettijohn D. E. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell. 1980 Oct;21(3):773–783. doi: 10.1016/0092-8674(80)90440-7. [DOI] [PubMed] [Google Scholar]
  30. Vesenka J., Guthold M., Tang C. L., Keller D., Delaine E., Bustamante C. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy. 1992 Jul;42-44(Pt B):1243–1249. doi: 10.1016/0304-3991(92)90430-r. [DOI] [PubMed] [Google Scholar]
  31. Yang J., Takeyasu K., Shao Z. Atomic force microscopy of DNA molecules. FEBS Lett. 1992 Apr 20;301(2):173–176. doi: 10.1016/0014-5793(92)81241-d. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES