Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):1839–1857. doi: 10.1016/S0006-3495(99)77028-1

Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations.

C Scharnagl 1, R Raupp-Kossmann 1, S F Fischer 1
PMCID: PMC1300468  PMID: 10512807

Abstract

We performed a theoretical study to elucidate the coupling between protonation states and orientation of protein dipoles and buried water molecules in green fluorescent protein, a versatile biosensor for protein targeting. It is shown that the ionization equilibria of the wild-type green fluorescent protein-fluorophore and the internal proton-binding site E222 are mutually interdependent. Two acid-base transitions of the fluorophore occur in the presence of neutral (physiologic pH) and ionized (pH > 12) E222, respectively. In the pH-range from approximately 8 to approximately 11 ionized and neutral sites are present in constant ratio, linked by internal proton transfer. The results indicate that modulation of the internal proton sharing by structural fluctuations or chemical variations of aligning residues T203 and S65 cause drastic changes of the neutral/anionic ratio-despite similar physiologic fluorophore pK(a) s. Moreover, we find that dipolar heterogeneities in the internal hydrogen-bond network lead to distributed driving forces for excited-state proton transfer. A molecular model for the unrelaxed surrounding after deprotonation is discussed in relation to pathways providing fast ground-state recovery or slow stabilization of the anion. The calculated total free energy for excited-state deprotonation ( approximately 19 k(B)T) and ground-state reprotonation ( approximately 2 k(B)T) is in accordance with absorption and emission data (</=5000 cm(-1) or 24 k(B)T).

Full Text

The Full Text of this article is available as a PDF (191.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexov E. G., Gunner M. R. Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J. 1997 May;72(5):2075–2093. doi: 10.1016/S0006-3495(97)78851-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  3. Baca M., Borgstahl G. E., Boissinot M., Burke P. M., Williams D. R., Slater K. A., Getzoff E. D. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry. Biochemistry. 1994 Dec 6;33(48):14369–14377. doi: 10.1021/bi00252a001. [DOI] [PubMed] [Google Scholar]
  4. Balashov S. P., Govindjee R., Imasheva E. S., Misra S., Ebrey T. G., Feng Y., Crouch R. K., Menick D. R. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry. 1995 Jul 11;34(27):8820–8834. doi: 10.1021/bi00027a034. [DOI] [PubMed] [Google Scholar]
  5. Balashov S. P., Imasheva E. S., Govindjee R., Ebrey T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J. 1996 Jan;70(1):473–481. doi: 10.1016/S0006-3495(96)79591-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bokman S. H., Ward W. W. Renaturation of Aequorea gree-fluorescent protein. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1372–1380. doi: 10.1016/0006-291x(81)91599-0. [DOI] [PubMed] [Google Scholar]
  7. Brejc K., Sixma T. K., Kitts P. A., Kain S. R., Tsien R. Y., Ormö M., Remington S. J. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2306–2311. doi: 10.1073/pnas.94.6.2306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chattoraj M., King B. A., Bublitz G. U., Boxer S. G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8362–8367. doi: 10.1073/pnas.93.16.8362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dickson R. M., Cubitt A. B., Tsien R. Y., Moerner W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997 Jul 24;388(6640):355–358. doi: 10.1038/41048. [DOI] [PubMed] [Google Scholar]
  10. Ehrig T., O'Kane D. J., Prendergast F. G. Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 1995 Jun 26;367(2):163–166. doi: 10.1016/0014-5793(95)00557-p. [DOI] [PubMed] [Google Scholar]
  11. Elsliger M. A., Wachter R. M., Hanson G. T., Kallio K., Remington S. J. Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry. 1999 Apr 27;38(17):5296–5301. doi: 10.1021/bi9902182. [DOI] [PubMed] [Google Scholar]
  12. Haupts U., Maiti S., Schwille P., Webb W. W. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13573–13578. doi: 10.1073/pnas.95.23.13573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heim R., Cubitt A. B., Tsien R. Y. Improved green fluorescence. Nature. 1995 Feb 23;373(6516):663–664. doi: 10.1038/373663b0. [DOI] [PubMed] [Google Scholar]
  14. Heim R., Tsien R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996 Feb 1;6(2):178–182. doi: 10.1016/s0960-9822(02)00450-5. [DOI] [PubMed] [Google Scholar]
  15. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  16. Karplus M., Petsko G. A. Molecular dynamics simulations in biology. Nature. 1990 Oct 18;347(6294):631–639. doi: 10.1038/347631a0. [DOI] [PubMed] [Google Scholar]
  17. Kneen M., Farinas J., Li Y., Verkman A. S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J. 1998 Mar;74(3):1591–1599. doi: 10.1016/S0006-3495(98)77870-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lanyi J. K. Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem. 1997 Dec 12;272(50):31209–31212. doi: 10.1074/jbc.272.50.31209. [DOI] [PubMed] [Google Scholar]
  19. Marrink S. J., Jähnig F., Berendsen H. J. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J. 1996 Aug;71(2):632–647. doi: 10.1016/S0006-3495(96)79264-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Misteli T., Spector D. L. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol. 1997 Oct;15(10):961–964. doi: 10.1038/nbt1097-961. [DOI] [PubMed] [Google Scholar]
  21. Niwa H., Inouye S., Hirano T., Matsuno T., Kojima S., Kubota M., Ohashi M., Tsuji F. I. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13617–13622. doi: 10.1073/pnas.93.24.13617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ormö M., Cubitt A. B., Kallio K., Gross L. A., Tsien R. Y., Remington S. J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392–1395. doi: 10.1126/science.273.5280.1392. [DOI] [PubMed] [Google Scholar]
  23. Palm G. J., Zdanov A., Gaitanaris G. A., Stauber R., Pavlakis G. N., Wlodawer A. The structural basis for spectral variations in green fluorescent protein. Nat Struct Biol. 1997 May;4(5):361–365. doi: 10.1038/nsb0597-361. [DOI] [PubMed] [Google Scholar]
  24. Patterson G. H., Knobel S. M., Sharif W. D., Kain S. R., Piston D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 1997 Nov;73(5):2782–2790. doi: 10.1016/S0006-3495(97)78307-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pomès R., Roux B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys J. 1998 Jul;75(1):33–40. doi: 10.1016/S0006-3495(98)77492-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ripoll D. R., Vorobjev Y. N., Liwo A., Vila J. A., Scheraga H. A. Coupling between folding and ionization equilibria: effects of pH on the conformational preferences of polypeptides. J Mol Biol. 1996 Dec 13;264(4):770–783. doi: 10.1006/jmbi.1996.0676. [DOI] [PubMed] [Google Scholar]
  27. Robey R. B., Ruiz O., Santos A. V., Ma J., Kear F., Wang L. J., Li C. J., Bernardo A. A., Arruda J. A. pH-dependent fluorescence of a heterologously expressed Aequorea green fluorescent protein mutant: in situ spectral characteristics and applicability to intracellular pH estimation. Biochemistry. 1998 Jul 14;37(28):9894–9901. doi: 10.1021/bi980857x. [DOI] [PubMed] [Google Scholar]
  28. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  29. Terry B. R., Matthews E. K., Haseloff J. Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem Biophys Res Commun. 1995 Dec 5;217(1):21–27. doi: 10.1006/bbrc.1995.2740. [DOI] [PubMed] [Google Scholar]
  30. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  31. Wachter R. M., Elsliger M. A., Kallio K., Hanson G. T., Remington S. J. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure. 1998 Oct 15;6(10):1267–1277. doi: 10.1016/s0969-2126(98)00127-0. [DOI] [PubMed] [Google Scholar]
  32. Wachter R. M., King B. A., Heim R., Kallio K., Tsien R. Y., Boxer S. G., Remington S. J. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry. 1997 Aug 12;36(32):9759–9765. doi: 10.1021/bi970563w. [DOI] [PubMed] [Google Scholar]
  33. Ward W. W., Bokman S. H. Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry. 1982 Sep 14;21(19):4535–4540. doi: 10.1021/bi00262a003. [DOI] [PubMed] [Google Scholar]
  34. Yang F., Moss L. G., Phillips G. N., Jr The molecular structure of green fluorescent protein. Nat Biotechnol. 1996 Oct;14(10):1246–1251. doi: 10.1038/nbt1096-1246. [DOI] [PubMed] [Google Scholar]
  35. Yang T. T., Sinai P., Green G., Kitts P. A., Chen Y. T., Lybarger L., Chervenak R., Patterson G. H., Piston D. W., Kain S. R. Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem. 1998 Apr 3;273(14):8212–8216. doi: 10.1074/jbc.273.14.8212. [DOI] [PubMed] [Google Scholar]
  36. You T. J., Bashford D. Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophys J. 1995 Nov;69(5):1721–1733. doi: 10.1016/S0006-3495(95)80042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Thor J. J., Pierik A. J., Nugteren-Roodzant I., Xie A., Hellingwerf K. J. Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry. 1998 Dec 1;37(48):16915–16921. doi: 10.1021/bi981170f. [DOI] [PubMed] [Google Scholar]
  38. van Vlijmen H. W., Schaefer M., Karplus M. Improving the accuracy of protein pKa calculations: conformational averaging versus the average structure. Proteins. 1998 Nov 1;33(2):145–158. doi: 10.1002/(sici)1097-0134(19981101)33:2<145::aid-prot1>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES