Abstract
Molecular dynamics calculations were carried out on models of two synthetic leucine-serine ion channels: a tetrameric bundle with sequence (LSLLLSL)(3)NH(2) and a hexameric bundle with sequence (LSSLLSL)(3)NH(2). Each protein bundle is inserted in a palmitoyloleoylphosphatidylcholine bilayer membrane and solvated by simple point charge water molecules inside the pore and at both mouths. Both systems appear to be stable in the absence of an electric field during the 4 ns of molecular dynamics simulation. The water motion in the narrow pore of the four-helix bundle is highly restricted and may provide suitable conditions for proton transfer via a water wire mechanism. In the wider hexameric pore, the water diffuses much more slowly than in bulk but is still mobile. This, along with the dimensions of the pore, supports the observation that this peptide is selective for monovalent cations. Reasonable agreement of predicted conductances with experimentally determined values lends support to the validity of the simulations.
Full Text
The Full Text of this article is available as a PDF (473.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodkin M. J., Goodfellow J. M. Competing interactions contributing to alpha-helical stability in aqueous solution. Protein Sci. 1995 Apr;4(4):603–612. doi: 10.1002/pro.5560040402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breed J., Sankararamakrishnan R., Kerr I. D., Sansom M. S. Molecular dynamics simulations of water within models of ion channels. Biophys J. 1996 Apr;70(4):1643–1661. doi: 10.1016/S0006-3495(96)79727-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
- Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
- Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
- DeGrado W. F., Lear J. D. Conformationally constrained alpha-helical peptide models for protein ion channels. Biopolymers. 1990 Jan;29(1):205–213. doi: 10.1002/bip.360290125. [DOI] [PubMed] [Google Scholar]
- Dieckmann G. R., Lear J. D., Zhong Q., Klein M. L., DeGrado W. F., Sharp K. A. Exploration of the structural features defining the conduction properties of a synthetic ion channel. Biophys J. 1999 Feb;76(2):618–630. doi: 10.1016/S0006-3495(99)77230-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Duan Y., Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998 Oct 23;282(5389):740–744. doi: 10.1126/science.282.5389.740. [DOI] [PubMed] [Google Scholar]
- Edholm O., Berger O., Jähnig F. Structure and fluctuations of bacteriorhodopsin in the purple membrane: a molecular dynamics study. J Mol Biol. 1995 Jun 30;250(1):94–111. doi: 10.1006/jmbi.1995.0361. [DOI] [PubMed] [Google Scholar]
- Forrest L. R., DeGrado W. F., Dieckmann G. R., Sansom M. S. Two models of the influenza A M2 channel domain: verification by comparison. Fold Des. 1998;3(6):443–448. doi: 10.1016/S1359-0278(98)00061-3. [DOI] [PubMed] [Google Scholar]
- Forrest L. R., Tieleman D. P., Sansom M. S. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer. Biophys J. 1999 Apr;76(4):1886–1896. doi: 10.1016/s0006-3495(99)77347-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghadiri M. R., Granja J. R., Buehler L. K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature. 1994 May 26;369(6478):301–304. doi: 10.1038/369301a0. [DOI] [PubMed] [Google Scholar]
- Jakobsson E., Chiu S. W. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels. Biophys J. 1987 Jul;52(1):33–45. doi: 10.1016/S0006-3495(87)83186-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr I. D., Sankararamakrishnan R., Smart O. S., Sansom M. S. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys J. 1994 Oct;67(4):1501–1515. doi: 10.1016/S0006-3495(94)80624-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kienker P. K., DeGrado W. F., Lear J. D. A helical-dipole model describes the single-channel current rectification of an uncharged peptide ion channel. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4859–4863. doi: 10.1073/pnas.91.11.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lear J. D., Wasserman Z. R., DeGrado W. F. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988 May 27;240(4856):1177–1181. doi: 10.1126/science.2453923. [DOI] [PubMed] [Google Scholar]
- Oiki S., Danho W., Madison V., Montal M. M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8703–8707. doi: 10.1073/pnas.85.22.8703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oiki S., Danho W., Montal M. Channel protein engineering: synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2393–2397. doi: 10.1073/pnas.85.7.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomès R., Roux B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys J. 1998 Jul;75(1):33–40. doi: 10.1016/S0006-3495(98)77492-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankararamakrishnan R., Adcock C., Sansom M. S. The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics. Biophys J. 1996 Oct;71(4):1659–1671. doi: 10.1016/S0006-3495(96)79370-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sansom M. S., Kerr I. D., Breed J., Sankararamakrishnan R. Water in channel-like cavities: structure and dynamics. Biophys J. 1996 Feb;70(2):693–702. doi: 10.1016/S0006-3495(96)79609-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seelig J., Waespe-Sarcevic N. Molecular order in cis and trans unsaturated phospholipid bilayers. Biochemistry. 1978 Aug 8;17(16):3310–3315. doi: 10.1021/bi00609a021. [DOI] [PubMed] [Google Scholar]
- Smart O. S., Breed J., Smith G. R., Sansom M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys J. 1997 Mar;72(3):1109–1126. doi: 10.1016/S0006-3495(97)78760-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. R., Sansom M. S. Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study. Biophys J. 1998 Dec;75(6):2767–2782. doi: 10.1016/S0006-3495(98)77720-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
- Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol. 1993 Feb 20;229(4):1101–1124. doi: 10.1006/jmbi.1993.1107. [DOI] [PubMed] [Google Scholar]
- Unwin N. The structure of ion channels in membranes of excitable cells. Neuron. 1989 Dec;3(6):665–676. doi: 10.1016/0896-6273(89)90235-3. [DOI] [PubMed] [Google Scholar]
- Walz T., Typke D., Smith B. L., Agre P., Engel A. Projection map of aquaporin-1 determined by electron crystallography. Nat Struct Biol. 1995 Sep;2(9):730–732. doi: 10.1038/nsb0995-730. [DOI] [PubMed] [Google Scholar]
- Woolf T. B., Roux B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11631–11635. doi: 10.1073/pnas.91.24.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolley G. A., Biggin P. C., Schultz A., Lien L., Jaikaran D. C., Breed J., Crowhurst K., Sansom M. S. Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer. Biophys J. 1997 Aug;73(2):770–778. doi: 10.1016/S0006-3495(97)78109-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong Q., Jiang Q., Moore P. B., Newns D. M., Klein M. L. Molecular dynamics simulation of a synthetic ion channel. Biophys J. 1998 Jan;74(1):3–10. doi: 10.1016/S0006-3495(98)77761-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong Q., Moore P. B., Newns D. M., Klein M. L. Molecular dynamics study of the LS3 voltage-gated ion channel. FEBS Lett. 1998 May 8;427(2):267–270. doi: 10.1016/s0014-5793(98)00304-4. [DOI] [PubMed] [Google Scholar]
