Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3277–3286. doi: 10.1016/S0006-3495(99)77158-4

Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis.

A Losi 1, A A Wegener 1, M Engelhard 1, W Gärtner 1, S E Braslavsky 1
PMCID: PMC1300598  PMID: 10585949

Abstract

Purified wild-type sensory rhodopsin II from Natronobacterium pharaonis (pSRII-WT) and its histidine-tagged analog (pSRII-His) were studied by laser-induced optoacoustic spectroscopy (LIOAS) and flash photolysis with optical detection. The samples were either dissolved in detergent or reconstituted into polar lipids from purple membrane (PML). The quantum yield for the formation of the long-lived state M(400) was determined as Phi(M) = 0.5 +/- 0.06 for both proteins. The structural volume change accompanying the production of K(510) as determined with LIOAS was DeltaV(R,1) </= 10 ml for both proteins, assuming Phi(K) >/= Phi(M), indicating that the His tag does not influence this early step of the photocycle. The medium has no influence on DeltaV(R,1), which is the largest so far measured for a retinal protein in this time range (<10 ns). This confirms the occurrence of conformational movements in pSRII for this step, as previously suggested by Fourier transform infrared spectroscopy. On the contrary, the decay of K(510) is an expansion in the detergent-dissolved sample and a contraction in PML. Assuming an efficiency of 1.0, DeltaV(R,2) = -3 ml/mol for pSRII-WT and -4.6 ml/mol for pSRII-His were calculated in PML, indicative of a small structural difference between the two proteins. The energy content of K(510) is also affected by the tag. It is E(K) = (88 +/- 13) for pSRII-WT and (134 +/- 11) kJ/mol for pSRII-His. A slight difference in the activation parameters for K(510) decay confirms an influence of the C-terminal His on this step. At variance with DeltaV(R,1), the opposite sign of DeltaV(R,2) in detergent and PML suggests the occurrence of solvation effects on the decay of K(510), which are probably due to a different interaction of the active site with the two dissolving media.

Full Text

The Full Text of this article is available as a PDF (116.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chizhov I., Schmies G., Seidel R., Sydor J. R., Lüttenberg B., Engelhard M. The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J. 1998 Aug;75(2):999–1009. doi: 10.1016/S0006-3495(98)77588-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davila J., Harriman A. Photoreactions of macrocyclic dyes bound to human serum albumin. Photochem Photobiol. 1990 Jan;51(1):9–19. doi: 10.1111/j.1751-1097.1990.tb01678.x. [DOI] [PubMed] [Google Scholar]
  3. Engelhard M., Scharf B., Siebert F. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Lett. 1996 Oct 21;395(2-3):195–198. doi: 10.1016/0014-5793(96)01041-1. [DOI] [PubMed] [Google Scholar]
  4. Guzzo A. V., Pool G. L. Visual pigment fluorescence. Science. 1968 Jan 19;159(3812):312–314. doi: 10.1126/science.159.3812.312. [DOI] [PubMed] [Google Scholar]
  5. Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
  6. Hohenfeld I. P., Wegener A. A., Engelhard M. Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett. 1999 Jan 15;442(2-3):198–202. doi: 10.1016/s0014-5793(98)01659-7. [DOI] [PubMed] [Google Scholar]
  7. Holloway P. W. A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem. 1973 May;53(1):304–308. doi: 10.1016/0003-2697(73)90436-3. [DOI] [PubMed] [Google Scholar]
  8. Imamoto Y., Shichida Y., Hirayama J., Tomioka H., Kamo N., Yoshizawa T. Chromophore configuration of pharaonis phoborhodopsin and its isomerization on photon absorption. Biochemistry. 1992 Mar 10;31(9):2523–2528. doi: 10.1021/bi00124a012. [DOI] [PubMed] [Google Scholar]
  9. Kort R., Vonk H., Xu X., Hoff W. D., Crielaard W., Hellingwerf K. J. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett. 1996 Mar 11;382(1-2):73–78. doi: 10.1016/0014-5793(96)00149-4. [DOI] [PubMed] [Google Scholar]
  10. Losi A., Braslavsky S. E., Gärtner W., Spudich J. L. Time-resolved absorption and photothermal measurements with sensory rhodopsin I from Halobacterium salinarum. Biophys J. 1999 Apr;76(4):2183–2191. doi: 10.1016/S0006-3495(99)77373-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyer T. E., Yakali E., Cusanovich M. A., Tollin G. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry. 1987 Jan 27;26(2):418–423. doi: 10.1021/bi00376a012. [DOI] [PubMed] [Google Scholar]
  12. Oesterhelt D. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol. 1998 Aug;8(4):489–500. doi: 10.1016/s0959-440x(98)80128-0. [DOI] [PubMed] [Google Scholar]
  13. Olson K. D., Spudich J. L. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle. Biophys J. 1993 Dec;65(6):2578–2585. doi: 10.1016/S0006-3495(93)81295-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Quail P. H. The phytochromes: a biochemical mechanism of signaling in sight? Bioessays. 1997 Jul;19(7):571–579. doi: 10.1002/bies.950190708. [DOI] [PubMed] [Google Scholar]
  15. Rigaud J. L., Mosser G., Lacapere J. J., Olofsson A., Levy D., Ranck J. L. Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J Struct Biol. 1997 Apr;118(3):226–235. doi: 10.1006/jsbi.1997.3848. [DOI] [PubMed] [Google Scholar]
  16. Rubinstenn G., Vuister G. W., Mulder F. A., Düx P. E., Boelens R., Hellingwerf K. J., Kaptein R. Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Nat Struct Biol. 1998 Jul;5(7):568–570. doi: 10.1038/823. [DOI] [PubMed] [Google Scholar]
  17. Ruddat A., Schmidt P., Gatz C., Braslavsky S. E., Gärtner W., Schaffner K. Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy. Biochemistry. 1997 Jan 7;36(1):103–111. doi: 10.1021/bi962012w. [DOI] [PubMed] [Google Scholar]
  18. Sasaki J., Spudich J. L. The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates. Biophys J. 1998 Nov;75(5):2435–2440. doi: 10.1016/S0006-3495(98)77687-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scharf B., Pevec B., Hess B., Engelhard M. Biochemical and photochemical properties of the photophobic receptors from Halobacterium halobium and Natronobacterium pharaonis. Eur J Biochem. 1992 Jun 1;206(2):359–366. doi: 10.1111/j.1432-1033.1992.tb16935.x. [DOI] [PubMed] [Google Scholar]
  20. Schulenberg P. J., Rohr M., Gärtner W., Braslavsky S. E. Photoinduced volume changes associated with the early transformations of bacteriorhodopsin: a laser-induced optoacoustic spectroscopy study. Biophys J. 1994 Mar;66(3 Pt 1):838–843. doi: 10.1016/s0006-3495(94)80860-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siebert F., Mäntele W. Investigation of the primary photochemistry of bacteriorhodopsin by low-temperature Fourier-transform infrared spectroscopy. Eur J Biochem. 1983 Feb 15;130(3):565–573. doi: 10.1111/j.1432-1033.1983.tb07187.x. [DOI] [PubMed] [Google Scholar]
  22. Small J. R., Libertini L. J., Small E. W. Analysis of photoacoustic waveforms using the nonlinear least squares method. Biophys Chem. 1992 Jan;42(1):29–48. doi: 10.1016/0301-4622(92)80005-p. [DOI] [PubMed] [Google Scholar]
  23. Spudich E. N., Zhang W., Alam M., Spudich J. L. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4960–4965. doi: 10.1073/pnas.94.10.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang D., Mauzerall D. Volume and enthalpy changes in the early steps of bacteriorhodopsin photocycle studied by time-resolved photoacoustics. Biophys J. 1996 Jul;71(1):381–388. doi: 10.1016/S0006-3495(96)79235-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Brederode M. E., Gensch T., Hoff W. D., Hellingwerf K. J., Braslavsky S. E. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1995 Mar;68(3):1101–1109. doi: 10.1016/S0006-3495(95)80284-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES