Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1629–1636. doi: 10.1016/S0006-3495(00)76413-7

Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase.

J Fitter 1, J Heberle 1
PMCID: PMC1301055  PMID: 10969023

Abstract

By comparing a mesophilic alpha-amylase with its thermophilic homolog, we investigated the relationship between thermal stability and internal equilibrium fluctuations. Fourier transform infrared spectroscopy monitoring hydrogen/deuterium (H/D) exchange kinetics and incoherent neutron scattering measuring picosecond dynamics were used to study dynamic features of the folded state at room temperature. Fairly similar rates of slowly exchanging amide protons indicate about the same free energy of stabilization DeltaG(stab) for both enzymes at room temperature. With respect to motions on shorter time scales, the thermophilic enzyme is characterized by an unexpected higher structural flexibility as compared to the mesophilic counterpart. In particular, the picosecond dynamics revealed a higher degree of conformational freedom for the thermophilic alpha-amylase. The mechanism proposed for increasing thermal stability in the present case is characterized by entropic stabilization and by flattening of the curvature of DeltaG(stab) as a function of temperature.

Full Text

The Full Text of this article is available as a PDF (140.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beadle B. M., Baase W. A., Wilson D. B., Gilkes N. R., Shoichet B. K. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry. 1999 Feb 23;38(8):2570–2576. doi: 10.1021/bi9824902. [DOI] [PubMed] [Google Scholar]
  2. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  3. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  4. Declerck N., Machius M., Chambert R., Wiegand G., Huber R., Gaillardin C. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: thermodynamic studies and structural interpretation. Protein Eng. 1997 May;10(5):541–549. doi: 10.1093/protein/10.5.541. [DOI] [PubMed] [Google Scholar]
  5. Feller G., d'Amico D., Gerday C. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry. 1999 Apr 6;38(14):4613–4619. doi: 10.1021/bi982650+. [DOI] [PubMed] [Google Scholar]
  6. Fitter J., Lechner R. E., Dencher N. A. Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J. 1997 Oct;73(4):2126–2137. doi: 10.1016/S0006-3495(97)78243-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fitter J. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys J. 1999 Feb;76(2):1034–1042. doi: 10.1016/S0006-3495(99)77268-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fitter J., Verclas S. A., Lechner R. E., Seelert H., Dencher N. A. Function and picosecond dynamics of bacteriorhodopsin in purple membrane at different lipidation and hydration. FEBS Lett. 1998 Aug 21;433(3):321–325. doi: 10.1016/s0014-5793(98)00938-7. [DOI] [PubMed] [Google Scholar]
  9. Hernandez G., Jenney F. E., Jr, Adams M. W., LeMaster D. M. Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3166–3170. doi: 10.1073/pnas.040569697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  11. Jaenicke R. How do proteins acquire their three-dimensional structure and stability? Naturwissenschaften. 1996 Dec;83(12):544–554. doi: 10.1007/BF01141979. [DOI] [PubMed] [Google Scholar]
  12. Jaenicke R., Schurig H., Beaucamp N., Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem. 1996;48:181–269. doi: 10.1016/s0065-3233(08)60363-0. [DOI] [PubMed] [Google Scholar]
  13. Kim K. S., Fuchs J. A., Woodward C. K. Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry. 1993 Sep 21;32(37):9600–9608. doi: 10.1021/bi00088a012. [DOI] [PubMed] [Google Scholar]
  14. Kim K. S., Woodward C. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry. 1993 Sep 21;32(37):9609–9613. doi: 10.1021/bi00088a013. [DOI] [PubMed] [Google Scholar]
  15. Korndörfer I., Steipe B., Huber R., Tomschy A., Jaenicke R. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J Mol Biol. 1995 Mar 3;246(4):511–521. doi: 10.1006/jmbi.1994.0103. [DOI] [PubMed] [Google Scholar]
  16. Ladenstein R., Antranikian G. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol. 1998;61:37–85. doi: 10.1007/BFb0102289. [DOI] [PubMed] [Google Scholar]
  17. Lazaridis T., Lee I., Karplus M. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 1997 Dec;6(12):2589–2605. doi: 10.1002/pro.5560061211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Machius M., Declerck N., Huber R., Wiegand G. Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure. 1998 Mar 15;6(3):281–292. doi: 10.1016/s0969-2126(98)00032-x. [DOI] [PubMed] [Google Scholar]
  19. Machius M., Wiegand G., Huber R. Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. J Mol Biol. 1995 Mar 3;246(4):545–559. doi: 10.1006/jmbi.1994.0106. [DOI] [PubMed] [Google Scholar]
  20. Madigan M. T., Marrs B. L. Extremophiles. Sci Am. 1997 Apr;276(4):82–87. doi: 10.1038/scientificamerican0497-82. [DOI] [PubMed] [Google Scholar]
  21. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mayo S. L., Baldwin R. L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science. 1993 Nov 5;262(5135):873–876. doi: 10.1126/science.8235609. [DOI] [PubMed] [Google Scholar]
  23. Pershina L., Hvidt A. A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin inhibitor and trypsin. Eur J Biochem. 1974 Oct 2;48(2):339–344. doi: 10.1111/j.1432-1033.1974.tb03774.x. [DOI] [PubMed] [Google Scholar]
  24. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  25. Receveur V., Calmettes P., Smith J. C., Desmadril M., Coddens G., Durand D. Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins. 1997 Jul;28(3):380–387. [PubMed] [Google Scholar]
  26. Roder H. Structural characterization of protein folding intermediates by proton magnetic resonance and hydrogen exchange. Methods Enzymol. 1989;176:446–473. doi: 10.1016/0076-6879(89)76024-9. [DOI] [PubMed] [Google Scholar]
  27. Susi H. The strength of hydrogen bonding: infrared spectroscopy. Methods Enzymol. 1972;26:381–391. doi: 10.1016/s0076-6879(72)26019-0. [DOI] [PubMed] [Google Scholar]
  28. Tang K. E., Dill K. A. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J Biomol Struct Dyn. 1998 Oct;16(2):397–411. doi: 10.1080/07391102.1998.10508256. [DOI] [PubMed] [Google Scholar]
  29. Vihinen M., Mäntsälä P. Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol. 1989;24(4):329–418. doi: 10.3109/10409238909082556. [DOI] [PubMed] [Google Scholar]
  30. Violet M., Meunier J. C. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J. 1989 Nov 1;263(3):665–670. doi: 10.1042/bj2630665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wagner G., Wüthrich K. Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J Mol Biol. 1979 May 5;130(1):31–37. doi: 10.1016/0022-2836(79)90550-3. [DOI] [PubMed] [Google Scholar]
  32. Wallon G., Kryger G., Lovett S. T., Oshima T., Ringe D., Petsko G. A. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. J Mol Biol. 1997 Mar 14;266(5):1016–1031. doi: 10.1006/jmbi.1996.0797. [DOI] [PubMed] [Google Scholar]
  33. Yamasaki K., Akasako-Furukawa A., Kanaya S. Structural stability and internal motions of Escherichia coli ribonuclease HI: 15N relaxation and hydrogen-deuterium exchange analyses. J Mol Biol. 1998 Apr 3;277(3):707–722. doi: 10.1006/jmbi.1997.1622. [DOI] [PubMed] [Google Scholar]
  34. Závodszky P., Kardos J., Svingor, Petsko G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7406–7411. doi: 10.1073/pnas.95.13.7406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. de Jongh H. H., Goormaghtigh E., Ruysschaert J. M. Tertiary stability of native and methionine-80 modified cytochrome c detected by proton-deuterium exchange using on-line Fourier transform infrared spectroscopy. Biochemistry. 1995 Jan 10;34(1):172–179. doi: 10.1021/bi00001a021. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES