Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2987–2999. doi: 10.1016/S0006-3495(01)76264-9

The standard deviation in fluorescence correlation spectroscopy.

T Wohland 1, R Rigler 1, H Vogel 1
PMCID: PMC1301482  PMID: 11371471

Abstract

The standard deviation (SD) in fluorescence correlation spectroscopy (FCS) has been mostly neglected in applications. However, the knowledge of the correct SD is necessary for an accurate data evaluation, especially when fitting theoretical models to experimental data. In this work, an algorithm is presented that considers the essential features of FCS. It allows prediction of the performance of FCS measurements in various cases, which is important for finding optimal experimental conditions. The program calculates the SD of the experimental autocorrelation function online. This procedure leads to improved parameter estimation, compared to currently used theoretical approximations for the SD. Three methods for the calculation of the SD are presented and compared to earlier analytical solutions (D. E. Koppel. 1974. Phys. Rev. A. 10:1938-1945.), calculation directly from fluorescence intensity values, by averaging several FCS measurements, or by dividing one measurement into a set of shorter data packages. Although the averaging over several measurements yields accurate estimates for the SD, the other two methods are considerably less time consuming, can be run online, and yield comparable results.

Full Text

The Full Text of this article is available as a PDF (155.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Di Cera E. Use of weighting functions in data fitting. Methods Enzymol. 1992;210:68–87. doi: 10.1016/0076-6879(92)10006-y. [DOI] [PubMed] [Google Scholar]
  3. Klingler J., Friedrich T. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy. Biophys J. 1997 Oct;73(4):2195–2200. doi: 10.1016/S0006-3495(97)78251-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Meseth U., Wohland T., Rigler R., Vogel H. Resolution of fluorescence correlation measurements. Biophys J. 1999 Mar;76(3):1619–1631. doi: 10.1016/S0006-3495(99)77321-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Qian H. On the statistics of fluorescence correlation spectroscopy. Biophys Chem. 1990 Oct;38(1-2):49–57. doi: 10.1016/0301-4622(90)80039-a. [DOI] [PubMed] [Google Scholar]
  6. Rauer B., Neumann E., Widengren J., Rigler R. Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem. 1996 Jan 16;58(1-2):3–12. doi: 10.1016/0301-4622(95)00080-1. [DOI] [PubMed] [Google Scholar]
  7. Sorell M., Kapoor N., Kirkpatrick D., Rosen J. F., Chaganti R. S., Lopez C., Dupont B., Pollack M. S., Terrin B. N., Harris M. B. Marrow transplantation for juvenile osteopetrosis. Am J Med. 1981 Jun;70(6):1280–1287. doi: 10.1016/0002-9343(81)90839-1. [DOI] [PubMed] [Google Scholar]
  8. Sterrer S., Henco K. Fluorescence correlation spectroscopy (FCS)--a highly sensitive method to analyze drug/target interactions. J Recept Signal Transduct Res. 1997 Jan-May;17(1-3):511–520. doi: 10.3109/10799899709036624. [DOI] [PubMed] [Google Scholar]
  9. Van Craenenbroeck E., Engelborghs Y. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry. 1999 Apr 20;38(16):5082–5088. doi: 10.1021/bi9821925. [DOI] [PubMed] [Google Scholar]
  10. Winkler T., Kettling U., Koltermann A., Eigen M. Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1375–1378. doi: 10.1073/pnas.96.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wohland T., Friedrich K., Hovius R., Vogel H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry. 1999 Jul 6;38(27):8671–8681. doi: 10.1021/bi990366s. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES