Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2378–2388. doi: 10.1016/S0006-3495(01)75884-5

Quantitative comparison of algorithms for tracking single fluorescent particles.

M K Cheezum 1, W F Walker 1, W H Guilford 1
PMCID: PMC1301708  PMID: 11566807

Abstract

Single particle tracking has seen numerous applications in biophysics, ranging from the diffusion of proteins in cell membranes to the movement of molecular motors. A plethora of computer algorithms have been developed to monitor the sub-pixel displacement of fluorescent objects between successive video frames, and some have been claimed to have "nanometer" resolution. To date, there has been no rigorous comparison of these algorithms under realistic conditions. In this paper, we quantitatively compare specific implementations of four commonly used tracking algorithms: cross-correlation, sum-absolute difference, centroid, and direct Gaussian fit. Images of fluorescent objects ranging in size from point sources to 5 microm were computer generated with known sub-pixel displacements. Realistic noise was added and the above four algorithms were compared for accuracy and precision. We found that cross-correlation is the most accurate algorithm for large particles. However, for point sources, direct Gaussian fit to the intensity distribution is the superior algorithm in terms of both accuracy and precision, and is the most robust at low signal-to-noise. Most significantly, all four algorithms fail as the signal-to-noise ratio approaches 4. We judge direct Gaussian fit to be the best algorithm when tracking single fluorophores, where the signal-to-noise is frequently near 4.

Full Text

The Full Text of this article is available as a PDF (147.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allersma M. W., Gittes F., deCastro M. J., Stewart R. J., Schmidt C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J. 1998 Feb;74(2 Pt 1):1074–1085. doi: 10.1016/S0006-3495(98)74031-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson C. M., Georgiou G. N., Morrison I. E., Stevenson G. V., Cherry R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci. 1992 Feb;101(Pt 2):415–425. doi: 10.1242/jcs.101.2.415. [DOI] [PubMed] [Google Scholar]
  3. Bohs L. N., Friemel B. H., McDermott B. A., Trahey G. E. A real time system for quantifying and displaying two-dimensional velocities using ultrasound. Ultrasound Med Biol. 1993;19(9):751–761. doi: 10.1016/0301-5629(93)90092-3. [DOI] [PubMed] [Google Scholar]
  4. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  5. Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goulian M., Simon S. M. Tracking single proteins within cells. Biophys J. 2000 Oct;79(4):2188–2198. doi: 10.1016/S0006-3495(00)76467-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guilford W. H., Gore R. W. The mechanics of arteriole-tissue interaction. Microvasc Res. 1995 Sep;50(2):260–287. doi: 10.1006/mvre.1995.1058. [DOI] [PubMed] [Google Scholar]
  8. Kubitscheck U., Kückmann O., Kues T., Peters R. Imaging and tracking of single GFP molecules in solution. Biophys J. 2000 Apr;78(4):2170–2179. doi: 10.1016/S0006-3495(00)76764-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee G. M., Ishihara A., Jacobson K. A. Direct observation of brownian motion of lipids in a membrane. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6274–6278. doi: 10.1073/pnas.88.14.6274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ryan T. A., Millard P. J., Webb W. W. Imaging [Ca2+]i dynamics during signal transduction. Cell Calcium. 1990 Feb-Mar;11(2-3):145–155. doi: 10.1016/0143-4160(90)90067-5. [DOI] [PubMed] [Google Scholar]
  12. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  13. Schütz G. J., Schindler H., Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J. 1997 Aug;73(2):1073–1080. doi: 10.1016/S0006-3495(97)78139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sonnleitner A., Schütz G. J., Schmidt T. Free Brownian motion of individual lipid molecules in biomembranes. Biophys J. 1999 Nov;77(5):2638–2642. doi: 10.1016/S0006-3495(99)77097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Uttenweiler D., Veigel C., Steubing R., Götz C., Mann S., Haussecker H., Jähne B., Fink R. H. Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method. Biophys J. 2000 May;78(5):2709–2715. doi: 10.1016/S0006-3495(00)76815-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Warshaw D. M., Hayes E., Gaffney D., Lauzon A. M., Wu J., Kennedy G., Trybus K., Lowey S., Berger C. Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8034–8039. doi: 10.1073/pnas.95.14.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Work S. S., Warshaw D. M. Computer-assisted tracking of actin filament motility. Anal Biochem. 1992 May 1;202(2):275–285. doi: 10.1016/0003-2697(92)90106-h. [DOI] [PubMed] [Google Scholar]
  19. de Jong P. G., Arts T., Hoeks A. P., Reneman R. S. Determination of tissue motion velocity by correlation interpolation of pulsed ultrasonic echo signals. Ultrason Imaging. 1990 Apr;12(2):84–98. doi: 10.1177/016173469001200202. [DOI] [PubMed] [Google Scholar]
  20. deBeer E. L., Sontrop A. M., Kellermayer M. S., Galambos C., Pollack G. H. Actin-filament motion in the in vitro motility assay has a periodic component. Cell Motil Cytoskeleton. 1997;38(4):341–350. doi: 10.1002/(SICI)1097-0169(1997)38:4<341::AID-CM4>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES