Abstract
A cell-scaled microbead system was used to analyze the force-dependent kinetics of P-selectin adhesive bonds independent of micromechanical properties of the neutrophil's surface microvilli, an elastic structure on which P-selectin ligand glycoprotein-1 (PSGL-1) is localized. Microvillus extension has been hypothesized in contributing to the dynamic range of leukocyte rolling observed in vivo during inflammatory processes. To evaluate PSGL-1/P-selectin bond kinetics of microbeads and neutrophils, rolling and tethering on P-selectin-coated substrates were compared in a parallel-plate flow chamber. The dissociation rates for PSGL-1 microbeads on P-selectin were briefer than those of neutrophils for any wall shear stress, and increased more rapidly with increasing flow. The microvillus length necessary to reconcile dissociation constants of PSGL-1 microbeads and neutrophils on P-selectin was 0.21 microm at 0.4 dyn/cm2, and increased to 1.58 microm at 2 dyn/cm2. The apparent elastic spring constant of the microvillus ranged from 1340 to 152 pN/microm at 0.4 and 2.0 dyn/cm2 wall shear stress. Scanning electron micrographs of neutrophils rolling on P-selectin confirmed the existence of micrometer-scaled tethers. Fixation of neutrophils to abrogate microvillus elasticity resulted in rolling behavior similar to PSGL-1 microbeads. Our results suggest that microvillus extension during transient PSGL-1/P-selectin bonding may enhance the robustness of neutrophil rolling interactions.
Full Text
The Full Text of this article is available as a PDF (453.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aigner S., Ramos C. L., Hafezi-Moghadam A., Lawrence M. B., Friederichs J., Altevogt P., Ley K. CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J. 1998 Sep;12(12):1241–1251. doi: 10.1096/fasebj.12.12.1241. [DOI] [PubMed] [Google Scholar]
- Aigner S., Sthoeger Z. M., Fogel M., Weber E., Zarn J., Ruppert M., Zeller Y., Vestweber D., Stahel R., Sammar M. CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood. 1997 May 1;89(9):3385–3395. [PubMed] [Google Scholar]
- Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
- Atherton A., Born G. V. Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol. 1973 Aug;233(1):157–165. doi: 10.1113/jphysiol.1973.sp010303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
- Berlin C., Bargatze R. F., Campbell J. J., von Andrian U. H., Szabo M. C., Hasslen S. R., Nelson R. D., Berg E. L., Erlandsen S. L., Butcher E. C. alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell. 1995 Feb 10;80(3):413–422. doi: 10.1016/0092-8674(95)90491-3. [DOI] [PubMed] [Google Scholar]
- Bruehl R. E., Springer T. A., Bainton D. F. Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J Histochem Cytochem. 1996 Aug;44(8):835–844. doi: 10.1177/44.8.8756756. [DOI] [PubMed] [Google Scholar]
- Brunk D. K., Goetz D. J., Hammer D. A. Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J. 1996 Nov;71(5):2902–2907. doi: 10.1016/S0006-3495(96)79487-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunk D. K., Hammer D. A. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997 Jun;72(6):2820–2833. doi: 10.1016/S0006-3495(97)78924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao J., Donell B., Deaver D. R., Lawrence M. B., Dong C. In vitro side-view imaging technique and analysis of human T-leukemic cell adhesion to ICAM-1 in shear flow. Microvasc Res. 1998 Mar;55(2):124–137. doi: 10.1006/mvre.1997.2064. [DOI] [PubMed] [Google Scholar]
- Chang K. C., Tees D. F., Hammer D. A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11262–11267. doi: 10.1073/pnas.200240897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
- Dong C., Cao J., Struble E. J., Lipowsky H. H. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng. 1999 May-Jun;27(3):298–312. doi: 10.1114/1.143. [DOI] [PubMed] [Google Scholar]
- Erlandsen S. L., Hasslen S. R., Nelson R. D. Detection and spatial distribution of the beta 2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high-resolution field emission SEM. J Histochem Cytochem. 1993 Mar;41(3):327–333. doi: 10.1177/41.3.7679125. [DOI] [PubMed] [Google Scholar]
- Evans E., Leung A., Hammer D., Simon S. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):3784–3789. doi: 10.1073/pnas.061324998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Firrell J. C., Lipowsky H. H. Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol. 1989 Jun;256(6 Pt 2):H1667–H1674. doi: 10.1152/ajpheart.1989.256.6.H1667. [DOI] [PubMed] [Google Scholar]
- Fritz J., Katopodis A. G., Kolbinger F., Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12283–12288. doi: 10.1073/pnas.95.21.12283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goetz D. J., Greif D. M., Ding H., Camphausen R. T., Howes S., Comess K. M., Snapp K. R., Kansas G. S., Luscinskas F. W. Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin. J Cell Biol. 1997 Apr 21;137(2):509–519. doi: 10.1083/jcb.137.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasslen S. R., Burns A. R., Simon S. I., Smith C. W., Starr K., Barclay A. N., Michie S. A., Nelson R. D., Erlandsen S. L. Preservation of spatial organization and antigenicity of leukocyte surface molecules by aldehyde fixation: flow cytometry and high-resolution FESEM studies of CD62L, CD11b, and Thy-1. J Histochem Cytochem. 1996 Oct;44(10):1115–1122. doi: 10.1177/44.10.8813076. [DOI] [PubMed] [Google Scholar]
- Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King M. R., Hammer D. A. Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys J. 2001 Aug;81(2):799–813. doi: 10.1016/S0006-3495(01)75742-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knorr R., Dustin M. L. The lymphocyte function-associated antigen 1 I domain is a transient binding module for intercellular adhesion molecule (ICAM)-1 and ICAM-3 in hydrodynamic flow. J Exp Med. 1997 Aug 29;186(5):719–730. doi: 10.1084/jem.186.5.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence M. B., Kansas G. S., Kunkel E. J., Ley K. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E) J Cell Biol. 1997 Feb 10;136(3):717–727. doi: 10.1083/jcb.136.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence M. B., Springer T. A. Neutrophils roll on E-selectin. J Immunol. 1993 Dec 1;151(11):6338–6346. [PubMed] [Google Scholar]
- Lei X., Lawrence M. B., Dong C. Influence of cell deformation on leukocyte rolling adhesion in shear flow. J Biomech Eng. 1999 Dec;121(6):636–643. doi: 10.1115/1.2800866. [DOI] [PubMed] [Google Scholar]
- Li F., Erickson H. P., James J. A., Moore K. L., Cummings R. D., McEver R. P. Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J Biol Chem. 1996 Mar 15;271(11):6342–6348. doi: 10.1074/jbc.271.11.6342. [DOI] [PubMed] [Google Scholar]
- Moore K. L., Patel K. D., Bruehl R. E., Li F., Johnson D. A., Lichenstein H. S., Cummings R. D., Bainton D. F., McEver R. P. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995 Feb;128(4):661–671. doi: 10.1083/jcb.128.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore K. L., Stults N. L., Diaz S., Smith D. F., Cummings R. D., Varki A., McEver R. P. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 1992 Jul;118(2):445–456. doi: 10.1083/jcb.118.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norman K. E., Katopodis A. G., Thoma G., Kolbinger F., Hicks A. E., Cotter M. J., Pockley A. G., Hellewell P. G. P-selectin glycoprotein ligand-1 supports rolling on E- and P-selectin in vivo. Blood. 2000 Nov 15;96(10):3585–3591. [PubMed] [Google Scholar]
- Norman K. E., Moore K. L., McEver R. P., Ley K. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood. 1995 Dec 15;86(12):4417–4421. [PubMed] [Google Scholar]
- Picker L. J., Warnock R. A., Burns A. R., Doerschuk C. M., Berg E. L., Butcher E. C. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 1991 Sep 6;66(5):921–933. doi: 10.1016/0092-8674(91)90438-5. [DOI] [PubMed] [Google Scholar]
- Ramachandran V., Nollert M. U., Qiu H., Liu W. J., Cummings R. D., Zhu C., McEver R. P. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13771–13776. doi: 10.1073/pnas.96.24.13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramachandran V., Yago T., Epperson T. K., Kobzdej M. M., Nollert M. U., Cummings R. D., Zhu C., McEver R. P. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc Natl Acad Sci U S A. 2001 Jul 31;98(18):10166–10171. doi: 10.1073/pnas.171248098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos C. L., Smith M. J., Snapp K. R., Kansas G. S., Stickney G. W., Ley K., Lawrence M. B. Functional characterization of L-selectin ligands on human neutrophils and leukemia cell lines: evidence for mucinlike ligand activity distinct from P-selectin glycoprotein ligand-1. Blood. 1998 Feb 1;91(3):1067–1075. [PubMed] [Google Scholar]
- Rodgers S. D., Camphausen R. T., Hammer D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys J. 2000 Aug;79(2):694–706. doi: 10.1016/S0006-3495(00)76328-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodgers S. D., Camphausen R. T., Hammer D. A. Tyrosine sulfation enhances but is not required for PSGL-1 rolling adhesion on P-selectin. Biophys J. 2001 Oct;81(4):2001–2009. doi: 10.1016/S0006-3495(01)75850-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7489–7493. doi: 10.1073/pnas.79.23.7489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid-Schönbein G. W., Usami S., Skalak R., Chien S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 1980 Jan;19(1):45–70. doi: 10.1016/0026-2862(80)90083-7. [DOI] [PubMed] [Google Scholar]
- Schmidtke D. W., Diamond S. L. Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J Cell Biol. 2000 May 1;149(3):719–730. doi: 10.1083/jcb.149.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao J. Y., Ting-Beall H. P., Hochmuth R. M. Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6797–6802. doi: 10.1073/pnas.95.12.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinde Patil V. R., Campbell C. J., Yun Y. H., Slack S. M., Goetz D. J. Particle diameter influences adhesion under flow. Biophys J. 2001 Apr;80(4):1733–1743. doi: 10.1016/s0006-3495(01)76144-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snapp K. R., Ding H., Atkins K., Warnke R., Luscinskas F. W., Kansas G. S. A novel P-selectin glycoprotein ligand-1 monoclonal antibody recognizes an epitope within the tyrosine sulfate motif of human PSGL-1 and blocks recognition of both P- and L-selectin. Blood. 1998 Jan 1;91(1):154–164. [PubMed] [Google Scholar]
- Somers W. S., Tang J., Shaw G. D., Camphausen R. T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell. 2000 Oct 27;103(3):467–479. doi: 10.1016/s0092-8674(00)00138-0. [DOI] [PubMed] [Google Scholar]
- Taylor A. D., Neelamegham S., Hellums J. D., Smith C. W., Simon S. I. Molecular dynamics of the transition from L-selectin- to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear. Biophys J. 1996 Dec;71(6):3488–3500. doi: 10.1016/S0006-3495(96)79544-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tees D. F., Waugh R. E., Hammer D. A. A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds. Biophys J. 2001 Feb;80(2):668–682. doi: 10.1016/S0006-3495(01)76047-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ushiyama S., Laue T. M., Moore K. L., Erickson H. P., McEver R. P. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J Biol Chem. 1993 Jul 15;268(20):15229–15237. [PubMed] [Google Scholar]
- Walcheck B., Moore K. L., McEver R. P., Kishimoto T. K. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Invest. 1996 Sep 1;98(5):1081–1087. doi: 10.1172/JCI118888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weis W. I., Taylor M. E., Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev. 1998 Jun;163:19–34. doi: 10.1111/j.1600-065x.1998.tb01185.x. [DOI] [PubMed] [Google Scholar]
- Yang J., Hirata T., Croce K., Merrill-Skoloff G., Tchernychev B., Williams E., Flaumenhaft R., Furie B. C., Furie B. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J Exp Med. 1999 Dec 20;190(12):1769–1782. doi: 10.1084/jem.190.12.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Andrian U. H., Hasslen S. R., Nelson R. D., Erlandsen S. L., Butcher E. C. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell. 1995 Sep 22;82(6):989–999. doi: 10.1016/0092-8674(95)90278-3. [DOI] [PubMed] [Google Scholar]