Abstract
Sidedness and accessibility of protein epitopes in intact brush border membrane vesicles were analyzed by detecting single molecule interaction forces using molecular recognition force microscopy in aqueous physiological solutions. Frequent antibody-antigen recognition events were observed with a force microscopy tip carrying an antibody directed against the periplasmically located gamma-glutamyltrans- peptidase, suggesting a right side out orientation of the vesicles. Phlorizin attached to the tips bound to NA+/D-glucose cotransporter molecules present in the vesicles. The recognition was sodium dependent and inhibited by free phlorizin and D-glucose, and revealed an apparent K(D) of 0.2 microM. Binding events were also observed with an antibody directed against the epitope aa603-aa630 close to the C terminus of the transporter. In the presence of phlorizin the probability of antibody binding was reduced but the most probable unbinding force f(u) = 100 pN remained unchanged. In the presence of D-glucose and sodium, however, both the binding probability and the most probable binding force (f(u) = 50 pN) were lower than in its absence. These studies demonstrate that molecular recognition force microscopy is a versatile tool to probe orientation and conformational changes of epitopes of membrane components during binding and trans-membrane transport.
Full Text
The Full Text of this article is available as a PDF (159.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumgartner W., Hinterdorfer P., Ness W., Raab A., Vestweber D., Schindler H., Drenckhahn D. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4005–4010. doi: 10.1073/pnas.070052697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumgartner W, Hinterdorfer P, Schindler H. Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy. 2000 Feb;82(1-4):85–95. doi: 10.1016/s0304-3991(99)00154-0. [DOI] [PubMed] [Google Scholar]
- Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
- Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
- Chen A., Moy V. T. Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J. 2000 Jun;78(6):2814–2820. doi: 10.1016/S0006-3495(00)76824-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIEDRICH D. F. The comparative effects of some phlorizin analogs on the renal reabsorption of glucose. Biochim Biophys Acta. 1963 Jun 4;71:688–700. doi: 10.1016/0006-3002(63)91142-9. [DOI] [PubMed] [Google Scholar]
- Drake B., Prater C. B., Weisenhorn A. L., Gould S. A., Albrecht T. R., Quate C. F., Cannell D. S., Hansma H. G., Hansma P. K. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science. 1989 Mar 24;243(4898):1586–1589. doi: 10.1126/science.2928794. [DOI] [PubMed] [Google Scholar]
- Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
- Frasch W., Frohnert P. P., Bode F., Baumann K., Kinne R. Competitive inhibition of phlorizin binding by D-glucose and the influence of sodium: a study on isolated brush border membrane of rat kidney. Pflugers Arch. 1970;320(3):265–284. doi: 10.1007/BF00587458. [DOI] [PubMed] [Google Scholar]
- Fritz J., Katopodis A. G., Kolbinger F., Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12283–12288. doi: 10.1073/pnas.95.21.12283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubmüller H., Heymann B., Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 1996 Feb 16;271(5251):997–999. doi: 10.1126/science.271.5251.997. [DOI] [PubMed] [Google Scholar]
- Haase W., Schäfer A., Murer H., Kinne R. Studies on the orientation of brush-border membrane vesicles. Biochem J. 1978 Apr 15;172(1):57–62. doi: 10.1042/bj1720057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han W., Dlakic M., Zhu Y. J., Lindsay S. M., Harrington R. E. Strained DNA is kinked by low concentrations of Zn2+. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10565–10570. doi: 10.1073/pnas.94.20.10565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han W., Lindsay S. M., Dlakic M., Harrington R. E. Kinked DNA. Nature. 1997 Apr 10;386(6625):563–563. doi: 10.1038/386563a0. [DOI] [PubMed] [Google Scholar]
- Haselgrübler T., Amerstorfer A., Schindler H., Gruber H. J. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjug Chem. 1995 May-Jun;6(3):242–248. doi: 10.1021/bc00033a002. [DOI] [PubMed] [Google Scholar]
- Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenny A. J., Booth A. G. Organization of the kidney proximal-tubule plasma membrane. Biochem Soc Trans. 1976;4(6):1011–1017. doi: 10.1042/bst0041011. [DOI] [PubMed] [Google Scholar]
- Koepsell H., Spangenberg J. Function and presumed molecular structure of Na(+)-D-glucose cotransport systems. J Membr Biol. 1994 Feb;138(1):1–11. doi: 10.1007/BF00211064. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lehenkari P. P., Horton M. A. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun. 1999 Jun 16;259(3):645–650. doi: 10.1006/bbrc.1999.0827. [DOI] [PubMed] [Google Scholar]
- Lin J. T., Da Cruz M. E., Riedel S., Kinne R. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer. Biochim Biophys Acta. 1981 Jan 8;640(1):43–54. doi: 10.1016/0005-2736(81)90530-7. [DOI] [PubMed] [Google Scholar]
- Lin J. T., Hahn K. D., Kinne R. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system. Biochim Biophys Acta. 1982 Dec 22;693(2):379–388. doi: 10.1016/0005-2736(82)90445-x. [DOI] [PubMed] [Google Scholar]
- Lin J., Kormanec J., Homerová D., Kinne R. K. Probing transmembrane topology of the high-affinity Sodium/Glucose cotransporter (SGLT1) with histidine-tagged mutants. J Membr Biol. 1999 Aug 1;170(3):243–252. doi: 10.1007/s002329900553. [DOI] [PubMed] [Google Scholar]
- Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
- Müller D. J., Schabert F. A., Büldt G., Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J. 1995 May;68(5):1681–1686. doi: 10.1016/S0006-3495(95)80345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oesterhelt F., Oesterhelt D., Pfeiffer M., Engel A., Gaub H. E., Müller D. J. Unfolding pathways of individual bacteriorhodopsins. Science. 2000 Apr 7;288(5463):143–146. doi: 10.1126/science.288.5463.143. [DOI] [PubMed] [Google Scholar]
- Panayotova-Heiermann M., Eskandari S., Turk E., Zampighi G. A., Wright E. M. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. J Biol Chem. 1997 Aug 15;272(33):20324–20327. doi: 10.1074/jbc.272.33.20324. [DOI] [PubMed] [Google Scholar]
- Raab A., Han W., Badt D., Smith-Gill S. J., Lindsay S. M., Schindler H., Hinterdorfer P. Antibody recognition imaging by force microscopy. Nat Biotechnol. 1999 Sep;17(9):901–905. doi: 10.1038/12898. [DOI] [PubMed] [Google Scholar]
- Sauer G. A., Nagel G., Koepsell H., Bamberg E., Hartung K. Voltage and substrate dependence of the inverse transport mode of the rabbit Na(+)/glucose cotransporter (SGLT1). FEBS Lett. 2000 Mar 3;469(1):98–100. doi: 10.1016/s0014-5793(00)01255-2. [DOI] [PubMed] [Google Scholar]
- Schwesinger F., Ros R., Strunz T., Anselmetti D., Güntherodt H. J., Honegger A., Jermutus L., Tiefenauer L., Pluckthun A. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9972–9977. doi: 10.1073/pnas.97.18.9972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
- Turk E., Kerner C. J., Lostao M. P., Wright E. M. Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem. 1996 Jan 26;271(4):1925–1934. doi: 10.1074/jbc.271.4.1925. [DOI] [PubMed] [Google Scholar]
- Wielert-Badt S., Lin J. T., Lorenz M., Fritz S., Kinne R. K. Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis. J Med Chem. 2000 May 4;43(9):1692–1698. doi: 10.1021/jm9905460. [DOI] [PubMed] [Google Scholar]
- Willemsen O. H., Snel M. M., van der Werf K. O., de Grooth B. G., Greve J., Hinterdorfer P., Gruber H. J., Schindler H., van Kooyk Y., Figdor C. G. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J. 1998 Nov;75(5):2220–2228. doi: 10.1016/S0006-3495(98)77666-0. [DOI] [PMC free article] [PubMed] [Google Scholar]