Abstract
Some proton pumps, such as cytochrome c oxidase (C(c)O), translocate protons across biological membranes at a rate that considerably exceeds the rate of proton transport to the entrance of the proton-conducting channel via bulk diffusion. This effect is usually ascribed to a proton-collecting antenna surrounding the channel entrance. In this paper, we consider a realistic phenomenological model of such an antenna. In our model, a homogeneous membrane surface, which can mediate proton diffusion toward the channel entrance, is populated with protolytic groups that are in dynamic equilibrium with the solution. Equations that describe coupled surface-bulk proton diffusion are derived and analyzed. A general expression for the rate constant of proton transport via such a coupled surface-bulk diffusion mechanism is obtained. A rigorous criterion is formulated of when proton diffusion along the surface enhances the transport. The enhancement factor is found to depend on the ratio of the surface and bulk diffusional constants, pK(a) values of surface protolytic groups, and their concentration. A capture radius for a proton on the surface and an effective size of the antenna are found. The theory also predicts the effective distance that a proton can migrate on the membrane surface between a source (such as CcO) and a sink (such as ATP synthase) without fully equilibrating with the bulk. In pure aqueous solutions, protons can travel over long distances (microns). In buffered solutions, the travel distance is much shorter (nanometers); still the enhancement effect of the surface diffusion on the proton flow to a target on the surface can be tens to hundreds at physiological buffer concentrations. These results are discussed in a general context of chemiosmotic theory.
Full Text
The Full Text of this article is available as a PDF (140.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexiev U., Marti T., Heyn M. P., Khorana H. G., Scherrer P. Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 2. Rotational orientation of helices D and E and kinetic correlation between M formation and proton release in bacteriorhodopsin micelles. Biochemistry. 1994 Nov 22;33(46):13693–13699. doi: 10.1021/bi00250a020. [DOI] [PubMed] [Google Scholar]
- Alexiev U., Mollaaghababa R., Scherrer P., Khorana H. G., Heyn M. P. Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):372–376. doi: 10.1073/pnas.92.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antonenko Y. N., Pohl P. Coupling of proton source and sink via H+-migration along the membrane surface as revealed by double patch-clamp experiments. FEBS Lett. 1998 Jun 12;429(2):197–200. doi: 10.1016/s0014-5793(98)00590-0. [DOI] [PubMed] [Google Scholar]
- Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg O. G., Blomberg C. Association kinetics with coupled diffusional flows. Special application to the lac repressor--operator system. Biophys Chem. 1976 Jul;4(4):367–381. doi: 10.1016/0301-4622(76)80017-8. [DOI] [PubMed] [Google Scholar]
- Berg O. G. Orientation constraints in diffusion-limited macromolecular association. The role of surface diffusion as a rate-enhancing mechanism. Biophys J. 1985 Jan;47(1):1–14. doi: 10.1016/S0006-3495(85)83870-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandsburg-Zabary S., Fried O., Marantz Y., Nachliel E., Gutman M. Biophysical aspects of intra-protein proton transfer. Biochim Biophys Acta. 2000 May 12;1458(1):120–134. doi: 10.1016/s0005-2728(00)00063-3. [DOI] [PubMed] [Google Scholar]
- Checover S., Nachliel E., Dencher N. A., Gutman M. Mechanism of proton entry into the cytoplasmic section of the proton-conducting channel of bacteriorhodopsin. Biochemistry. 1997 Nov 11;36(45):13919–13928. doi: 10.1021/bi9717542. [DOI] [PubMed] [Google Scholar]
- Ferguson S. J. Chemiosmotic coupling. Protons fast and slow. Curr Biol. 1995 Jan 1;5(1):25–27. doi: 10.1016/s0960-9822(95)00008-x. [DOI] [PubMed] [Google Scholar]
- Gabriel B., Prats M., Teissié J. Proton lateral conduction along a lipid monolayer spread on a physiological subphase. Biochim Biophys Acta. 1994 Jul 29;1186(3):172–176. doi: 10.1016/0005-2728(94)90176-7. [DOI] [PubMed] [Google Scholar]
- Gabriel B., Teissié J. Proton long-range migration along protein monolayers and its consequences on membrane coupling. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14521–14525. doi: 10.1073/pnas.93.25.14521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutman M., Nachliel E. Time-resolved dynamics of proton transfer in proteinous systems. Annu Rev Phys Chem. 1997;48:329–356. doi: 10.1146/annurev.physchem.48.1.329. [DOI] [PubMed] [Google Scholar]
- Hardt S. L. Rates of diffusion controlled reactions in one, two and three dimensions. Biophys Chem. 1979 Nov;10(3-4):239–243. doi: 10.1016/0301-4622(79)85012-7. [DOI] [PubMed] [Google Scholar]
- Heberle J., Dencher N. A. Surface-bound optical probes monitor protein translocation and surface potential changes during the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5996–6000. doi: 10.1073/pnas.89.13.5996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta. 2000 May 12;1458(1):135–147. doi: 10.1016/s0005-2728(00)00064-5. [DOI] [PubMed] [Google Scholar]
- Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 1994 Aug 4;370(6488):379–382. doi: 10.1038/370379a0. [DOI] [PubMed] [Google Scholar]
- Junge W., McLaughlin S. The role of fixed and mobile buffers in the kinetics of proton movement. Biochim Biophys Acta. 1987 Jan 16;890(1):1–5. doi: 10.1016/0005-2728(87)90061-2. [DOI] [PubMed] [Google Scholar]
- Karpefors M., Adelroth P., Namslauer A., Zhen Y., Brzezinski P. Formation of the "peroxy" intermediate in cytochrome c oxidase is associated with internal proton/hydrogen transfer. Biochemistry. 2000 Nov 28;39(47):14664–14669. doi: 10.1021/bi0013748. [DOI] [PubMed] [Google Scholar]
- Krasinskaya I. P., Lapin M. V., Yaguzhinsky L. S. Detection of the local H+ gradients on the internal mitochondrial membrane. FEBS Lett. 1998 Nov 27;440(1-2):223–225. doi: 10.1016/s0014-5793(98)01463-x. [DOI] [PubMed] [Google Scholar]
- Marantz Y., Nachliel E., Aagaard A., Brzezinski P., Gutman M. The proton collecting function of the inner surface of cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8590–8595. doi: 10.1073/pnas.95.15.8590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthew J. B., Richards F. M. Anion binding and pH-dependent electrostatic effects in ribonuclease. Biochemistry. 1982 Sep 28;21(20):4989–4999. doi: 10.1021/bi00263a024. [DOI] [PubMed] [Google Scholar]
- Nachliel E., Gutman M., Kiryati S., Dencher N. A. Protonation dynamics of the extracellular and cytoplasmic surface of bacteriorhodopsin in the purple membrane. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10747–10752. doi: 10.1073/pnas.93.20.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachliel E., Gutman M. Quantitative evaluation of the dynamics of proton transfer from photoactivated bacteriorhodopsin to the bulk. FEBS Lett. 1996 Sep 16;393(2-3):221–225. doi: 10.1016/0014-5793(96)00870-8. [DOI] [PubMed] [Google Scholar]
- Nunogaki K., Kasai M. The H+/OH- flux localizes around the channel mouth in buffered solution. J Theor Biol. 1988 Oct 7;134(3):403–415. doi: 10.1016/s0022-5193(88)80070-5. [DOI] [PubMed] [Google Scholar]
- Peitzsch R. M., Eisenberg M., Sharp K. A., McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J. 1995 Mar;68(3):729–738. doi: 10.1016/S0006-3495(95)80253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riesle J., Oesterhelt D., Dencher N. A., Heberle J. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Biochemistry. 1996 May 28;35(21):6635–6643. doi: 10.1021/bi9600456. [DOI] [PubMed] [Google Scholar]
- Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
- Scherrer P., Alexiev U., Marti T., Khorana H. G., Heyn M. P. Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 1. Proton migration along the surface of bacteriorhodopsin micelles and its delayed transfer from surface to bulk. Biochemistry. 1994 Nov 22;33(46):13684–13692. doi: 10.1021/bi00250a019. [DOI] [PubMed] [Google Scholar]
- Scherrer P. Proton movement on membranes. Nature. 1995 Mar 16;374(6519):222–222. doi: 10.1038/374222a0. [DOI] [PubMed] [Google Scholar]
- Schranner R., Richter P. H. Rate enhancement by guided diffusion. Chain length dependence of repressor-operator association rates. Biophys Chem. 1978 May;8(2):135–150. doi: 10.1016/0301-4622(78)80005-2. [DOI] [PubMed] [Google Scholar]
- Teissié J. Lateral proton diffusion. Nature. 1996 Jan 25;379(6563):305–306. doi: 10.1038/379305b0. [DOI] [PubMed] [Google Scholar]
- Wikström M. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr Opin Struct Biol. 1998 Aug;8(4):480–488. doi: 10.1016/s0959-440x(98)80127-9. [DOI] [PubMed] [Google Scholar]