Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1557–1566. doi: 10.1016/S0006-3495(02)73925-8

Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states.

Jianping Wang 1, Stephan Link 1, Colin D Heyes 1, Mostafa A El-Sayed 1
PMCID: PMC1302253  PMID: 12202380

Abstract

In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.

Full Text

The Full Text of this article is available as a PDF (455.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becher B., Cassim J. Y. Effects of bleaching and regeneration on the purple membrane structure of Halobaterium halobium. Biophys J. 1977 Sep;19(3):285–297. doi: 10.1016/s0006-3495(77)85588-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birge R. R. Photophysics of light transduction in rhodopsin and bacteriorhodopsin. Annu Rev Biophys Bioeng. 1981;10:315–354. doi: 10.1146/annurev.bb.10.060181.001531. [DOI] [PubMed] [Google Scholar]
  3. Brouillette C. G., McMichens R. B., Stern L. J., Khorana H. G. Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles. Proteins. 1989;5(1):38–46. doi: 10.1002/prot.340050106. [DOI] [PubMed] [Google Scholar]
  4. Dencher N. A., Kohl K. D., Heyn M. P. Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments. Biochemistry. 1983 Mar 15;22(6):1323–1334. doi: 10.1021/bi00275a002. [DOI] [PubMed] [Google Scholar]
  5. Du J. J., el-Sayed M. A., Stern L. J., Mogi T., Khorana H. G. Sensitivity of the retinal circular dichroism of bacteriorhodopsin to the mutagenetic single substitution of amino acids: tyrosine. FEBS Lett. 1990 Mar 26;262(2):155–158. doi: 10.1016/0014-5793(90)80178-l. [DOI] [PubMed] [Google Scholar]
  6. Dupuis P., Corcoran T. C., El-Sayed M. A. Importance of bound divalent cations to the tyrosine deprotonation during the photocycle of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3662–3664. doi: 10.1073/pnas.82.11.3662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edman K., Nollert P., Royant A., Belrhali H., Pebay-Peyroula E., Hajdu J., Neutze R., Landau E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature. 1999 Oct 21;401(6755):822–826. doi: 10.1038/44623. [DOI] [PubMed] [Google Scholar]
  8. El-Sayed M. A., Karvaly B., Fukumoto J. M. Primary step in the bacteriorhodopsin photocycle: photochemistry or excitation transfer? Proc Natl Acad Sci U S A. 1981 Dec;78(12):7512–7516. doi: 10.1073/pnas.78.12.7512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. El-Sayed M. A., Lin C. T., Mason W. R. Is there an excitonic interaction or antenna system in bacteriorhodopsin? Proc Natl Acad Sci U S A. 1989 Jul;86(14):5376–5379. doi: 10.1073/pnas.86.14.5376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukuda K., Ikegami A., Nasuda-Kouyama A., Kouyama T. Effect of partial delipidation of purple membrane on the photodynamics of bacteriorhodopsin. Biochemistry. 1990 Feb 27;29(8):1997–2002. doi: 10.1021/bi00460a006. [DOI] [PubMed] [Google Scholar]
  12. Gai F., Hasson K. C., McDonald J. C., Anfinrud P. A. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Science. 1998 Mar 20;279(5358):1886–1891. doi: 10.1126/science.279.5358.1886. [DOI] [PubMed] [Google Scholar]
  13. González-Luque R., Garavelli M., Bernardi F., Merchán M., Robb M. A., Olivucci M. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9379–9384. doi: 10.1073/pnas.97.17.9379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  15. Haltia T., Freire E. Forces and factors that contribute to the structural stability of membrane proteins. Biochim Biophys Acta. 1995 Feb 14;1228(1):1–27. doi: 10.1016/0005-2728(94)00161-w. [DOI] [PubMed] [Google Scholar]
  16. Hasson K. C., Gai F., Anfinrud P. A. The photoisomerization of retinal in bacteriorhodospin: experimental evidence for a three-state model. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15124–15129. doi: 10.1073/pnas.93.26.15124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. An atomic model for the structure of bacteriorhodopsin. Biochem Soc Trans. 1990 Oct;18(5):844–844. doi: 10.1042/bst0180844. [DOI] [PubMed] [Google Scholar]
  18. Heyn M. P., Bauer P. J., Dencher N. A. A natural CD label to probe the structure of the purple membrane from Halobacterium halobium by means of exciton coupling effects. Biochem Biophys Res Commun. 1975 Dec 1;67(3):897–903. doi: 10.1016/0006-291x(75)90761-5. [DOI] [PubMed] [Google Scholar]
  19. Isenbarger T. A., Krebs M. P. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice. Biochemistry. 1999 Jul 13;38(28):9023–9030. doi: 10.1021/bi9905563. [DOI] [PubMed] [Google Scholar]
  20. Kandori H., Kinoshita N., Yamazaki Y., Maeda A., Shichida Y., Needleman R., Lanyi J. K., Bizounok M., Herzfeld J., Raap J. Local and distant protein structural changes on photoisomerization of the retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4643–4648. doi: 10.1073/pnas.080064797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K., Murata K., Hirai T., Fujiyoshi Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature. 1997 Sep 11;389(6647):206–211. doi: 10.1038/38323. [DOI] [PubMed] [Google Scholar]
  22. Krebs M. P., Li W., Halambeck T. P. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane. J Mol Biol. 1997 Mar 21;267(1):172–183. doi: 10.1006/jmbi.1996.0848. [DOI] [PubMed] [Google Scholar]
  23. Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532–14535. doi: 10.1073/pnas.93.25.14532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lanyi J. K. Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem. 1997 Dec 12;272(50):31209–31212. doi: 10.1074/jbc.272.50.31209. [DOI] [PubMed] [Google Scholar]
  25. Lanyi J. K. Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin. FEBS Lett. 1999 Dec 31;464(3):103–107. doi: 10.1016/s0014-5793(99)01685-3. [DOI] [PubMed] [Google Scholar]
  26. Liu S. Y. Light-induced currents from oriented purple membrane: I. Correlation of the microsecond component (B2) with the L-M photocycle transition. Biophys J. 1990 May;57(5):943–950. doi: 10.1016/S0006-3495(90)82614-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Logunov S. L., Volkov V. V., Braun M., El-Sayed M. A. The relaxation dynamics of the excited electronic states of retinal in bacteriorhodopsin by two-pump-probe femtosecond studies. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8475–8479. doi: 10.1073/pnas.141220198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
  30. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
  31. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  32. Mathies R. A., Brito Cruz C. H., Pollard W. T., Shank C. V. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science. 1988 May 6;240(4853):777–779. doi: 10.1126/science.3363359. [DOI] [PubMed] [Google Scholar]
  33. Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
  34. Milder S. J., Thorgeirsson T. E., Miercke L. J., Stroud R. M., Kliger D. S. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin. Biochemistry. 1991 Feb 19;30(7):1751–1761. doi: 10.1021/bi00221a004. [DOI] [PubMed] [Google Scholar]
  35. Muccio D. D., Cassim J. Y. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films. Biophys J. 1979 Jun;26(3):427–440. doi: 10.1016/S0006-3495(79)85263-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  37. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  38. Polland H. J., Franz M. A., Zinth W., Kaiser W., Kölling E., Oesterhelt D. Early picosecond events in the photocycle of bacteriorhodopsin. Biophys J. 1986 Mar;49(3):651–662. doi: 10.1016/S0006-3495(86)83692-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rammelsberg R., Huhn G., Lübben M., Gerwert K. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry. 1998 Apr 7;37(14):5001–5009. doi: 10.1021/bi971701k. [DOI] [PubMed] [Google Scholar]
  40. Reyenolds J. A., Stoeckenius W. Molecular weight of bacteriorhodopsin solubilized in Triton X-100. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2803–2804. doi: 10.1073/pnas.74.7.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rousso I., Khachatryan E., Gat Y., Brodsky I., Ottolenghi M., Sheves M., Lewis A. Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7937–7941. doi: 10.1073/pnas.94.15.7937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Scherrer P., Mathew M. K., Sperling W., Stoeckenius W. Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers. Biochemistry. 1989 Jan 24;28(2):829–834. doi: 10.1021/bi00428a063. [DOI] [PubMed] [Google Scholar]
  43. Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991 Oct 18;254(5030):412–415. doi: 10.1126/science.1925597. [DOI] [PubMed] [Google Scholar]
  44. Song L., El-Sayed M. A., Lanyi J. K. Protein catalysis of the retinal subpicosecond photoisomerization in the primary process of bacteriorhodopsin photosynthesis. Science. 1993 Aug 13;261(5123):891–894. doi: 10.1126/science.261.5123.891. [DOI] [PubMed] [Google Scholar]
  45. Subramaniam S., Gerstein M., Oesterhelt D., Henderson R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 1993 Jan;12(1):1–8. doi: 10.1002/j.1460-2075.1993.tb05625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Váró G., Lanyi J. K. Effects of the crystalline structure of purple membrane on the kinetics and energetics of the bacteriorhodopsin photocycle. Biochemistry. 1991 Jul 23;30(29):7165–7171. doi: 10.1021/bi00243a018. [DOI] [PubMed] [Google Scholar]
  47. Wang J., El-Sayed M. A. Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin. Biophys J. 2001 Feb;80(2):961–971. doi: 10.1016/S0006-3495(01)76075-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wu S., El-Sayed M. A. CD spectrum of bacteriorhodopsin: Best evidence against exciton model. Biophys J. 1991 Jul;60(1):190–197. doi: 10.1016/S0006-3495(91)82042-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES