Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):1834–1841. doi: 10.1016/S0006-3495(02)73948-9

Red blood cells augment leukocyte rolling in a virtual blood vessel.

Cristiano Migliorini 1, YueHong Qian 1, Hudong Chen 1, Edward B Brown 1, Rakesh K Jain 1, Lance L Munn 1
PMCID: PMC1302276  PMID: 12324405

Abstract

Leukocyte rolling and arrest on the vascular endothelium is a central event in normal and pathological immune responses. However, rigorous estimation of the fluid and surface forces involved in leukocyte-endothelial interactions has been difficult due to the particulate, non-Newtonian nature of blood. Here we present a Lattice-Boltzmann approach to quantify forces exerted on rolling leukocytes by red blood cells in a "virtual blood vessel." We report that the normal force imparted by erythrocytes is sufficient to increase leukocyte binding and that increases in tangential force and torque can promote rolling of previously adherent leukocytes. By simulating changes in hematocrit we show that a close "envelopment" of the leukocyte by the red blood cells is necessary to produce significant changes in the forces. This novel approach can be applied to a large number of biological and industrial problems involving the complex flow of particulate suspensions.

Full Text

The Full Text of this article is available as a PDF (507.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackshear P. L., Jr, Forstrom R. J., Dorman F. D., Voss G. O. Effect of flow on cells near walls. Fed Proc. 1971 Sep-Oct;30(5):1600–1611. [PubMed] [Google Scholar]
  2. Brown E. B., Campbell R. B., Tsuzuki Y., Xu L., Carmeliet P., Fukumura D., Jain R. K. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001 Jul;7(7):864–868. doi: 10.1038/89997. [DOI] [PubMed] [Google Scholar]
  3. Chang K. C., Tees D. F., Hammer D. A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11262–11267. doi: 10.1073/pnas.200240897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman G. B., Cokelet G. R. Model studies of leukocyte-endothelium-blood interactions. II. Hemodynamic impact of leukocytes adherent to the wall of post-capillary vessels. Biorheology. 1997 Jan-Feb;34(1):37–56. doi: 10.1016/S0006-355X(97)00003-6. [DOI] [PubMed] [Google Scholar]
  5. Cokelet G. R., Goldsmith H. L. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res. 1991 Jan;68(1):1–17. doi: 10.1161/01.res.68.1.1. [DOI] [PubMed] [Google Scholar]
  6. Dong C., Cao J., Struble E. J., Lipowsky H. H. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng. 1999 May-Jun;27(3):298–312. doi: 10.1114/1.143. [DOI] [PubMed] [Google Scholar]
  7. Gaver D. P., 3rd, Kute S. M. A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys J. 1998 Aug;75(2):721–733. doi: 10.1016/S0006-3495(98)77562-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. King M. R., Hammer D. A. Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys J. 2001 Aug;81(2):799–813. doi: 10.1016/S0006-3495(01)75742-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Melder R. J., Munn L. L., Yamada S., Ohkubo C., Jain R. K. Selectin- and integrin-mediated T-lymphocyte rolling and arrest on TNF-alpha-activated endothelium: augmentation by erythrocytes. Biophys J. 1995 Nov;69(5):2131–2138. doi: 10.1016/S0006-3495(95)80087-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Melder R. J., Yuan J., Munn L. L., Jain R. K. Erythrocytes enhance lymphocyte rolling and arrest in vivo. Microvasc Res. 2000 Mar;59(2):316–322. doi: 10.1006/mvre.1999.2223. [DOI] [PubMed] [Google Scholar]
  12. Mitchell D. J., Li P., Reinhardt P. H., Kubes P. Importance of L-selectin-dependent leukocyte-leukocyte interactions in human whole blood. Blood. 2000 May 1;95(9):2954–2959. [PubMed] [Google Scholar]
  13. Munn L. L., Melder R. J., Jain R. K. Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation. Biophys J. 1996 Jul;71(1):466–478. doi: 10.1016/S0006-3495(96)79248-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmid-Schoenbein G. W., Fung Y. C., Zweifach B. W. Vascular endothelium-leukocyte interaction; sticking shear force in venules. Circ Res. 1975 Jan;36(1):173–184. doi: 10.1161/01.res.36.1.173. [DOI] [PubMed] [Google Scholar]
  15. Schmid-Schönbein G. W., Usami S., Skalak R., Chien S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 1980 Jan;19(1):45–70. doi: 10.1016/0026-2862(80)90083-7. [DOI] [PubMed] [Google Scholar]
  16. Zhao Y., Chien S., Weinbaum S. Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys J. 2001 Mar;80(3):1124–1140. doi: 10.1016/S0006-3495(01)76090-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES