Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3177–3187. doi: 10.1016/S0006-3495(02)75320-4

Cellular characterization of adenylate kinase and its isoform: two-photon excitation fluorescence imaging and fluorescence correlation spectroscopy.

Qiaoqiao Ruan 1, Yan Chen 1, Enrico Gratton 1, Michael Glaser 1, William W Mantulin 1
PMCID: PMC1302395  PMID: 12496087

Abstract

Adenylate kinase (AK) is a ubiquitous enzyme that regulates the homeostasis of adenine nucleotides in the cell. AK1beta (long form) from murine cells shares the same protein sequence as AK1 (short form) except for the addition of 18 amino acid residues at its N-terminus. It is hypothesized that these residues serve as a signal for protein lipid modification and targeting of the protein to the plasma membrane. To better understand the cellular function of these AK isoforms, we have used several modern fluorescence techniques to characterize these two isoforms of AK enzyme. We fused cytosolic adenylate kinase (AK1) and its isoform (AK1beta) with enhanced green fluorescence protein (EGFP) and expressed the chimera proteins in HeLa cells. Using two-photon excitation scanning fluorescence imaging, we were able to directly visualize the localization of AK1-EGFP and AK1beta-EGFP in live cells. AK1beta-EGFP mainly localized on the plasma membrane, whereas AK1-EGFP distributed throughout the cell except for trace amounts in the nuclear membrane and some vesicles. We performed fluorescence correlation spectroscopy measurements and photon-counting histogram analysis in specific domains of live cells. For AK1-EGFP, we observed only one diffusion component in the cytoplasm. For AK1beta-EGFP, we observed two distinct diffusion components on the plasma membrane. One corresponded to the free diffusing protein, whereas the other represented the membrane-bound AK1beta-EGFP. The diffusion rate of AK1-EGFP was slowed by a factor of 1.8 with respect to that of EGFP, which was 50% more than what we would expect for a free diffusing AK1-EGFP. To rule out the possibility of oligomer formation, we performed photon-counting histogram analysis to direct analyze the brightness difference between AK1-EGFP and EGFP. From our analysis, we concluded that cytoplasmic AK1-EGFP is monomeric. fluorescence correlation spectroscopy proved to be a powerful technique for quantitatively studying the mobility of the target protein in live cells. This technology offers advantages in studying protein interactions and function in the cell.

Full Text

The Full Text of this article is available as a PDF (650.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson H., Baechi T., Hoechl M., Richter C. Autofluorescence of living cells. J Microsc. 1998 Jul;191(Pt 1):1–7. doi: 10.1046/j.1365-2818.1998.00347.x. [DOI] [PubMed] [Google Scholar]
  2. Berland K. M., So P. T., Gratton E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J. 1995 Feb;68(2):694–701. doi: 10.1016/S0006-3495(95)80230-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boutin J. A. Myristoylation. Cell Signal. 1997 Jan;9(1):15–35. doi: 10.1016/s0898-6568(96)00100-3. [DOI] [PubMed] [Google Scholar]
  4. Brock R., Hink M. A., Jovin T. M. Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J. 1998 Nov;75(5):2547–2557. doi: 10.1016/S0006-3495(98)77699-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brock R., Vàmosi G., Vereb G., Jovin T. M. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10123–10128. doi: 10.1073/pnas.96.18.10123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrasco A. J., Dzeja P. P., Alekseev A. E., Pucar D., Zingman L. V., Abraham M. R., Hodgson D., Bienengraeber M., Puceat M., Janssen E. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci U S A. 2001 Jun 5;98(13):7623–7628. doi: 10.1073/pnas.121038198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Yan, Müller Joachim D., Ruan QiaoQiao, Gratton Enrico. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J. 2002 Jan;82(1 Pt 1):133–144. doi: 10.1016/S0006-3495(02)75380-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cinelli R. A., Ferrari A., Pellegrini V., Tyagi M., Giacca M., Beltram F. The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level. Photochem Photobiol. 2000 Jun;71(6):771–776. doi: 10.1562/0031-8655(2000)071<0771:tegfpa>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  10. Collavin L., Lazarevic D., Utrera R., Marzinotto S., Monte M., Schneider C. wt p53 dependent expression of a membrane-associated isoform of adenylate kinase. Oncogene. 1999 Oct 21;18(43):5879–5888. doi: 10.1038/sj.onc.1202970. [DOI] [PubMed] [Google Scholar]
  11. Croce A. C., Spano A., Locatelli D., Barni S., Sciola L., Bottiroli G. Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity. Photochem Photobiol. 1999 Mar;69(3):364–374. doi: 10.1562/0031-8655(1999)069<0364:dofapo>2.3.co;2. [DOI] [PubMed] [Google Scholar]
  12. Fahey P. F., Koppel D. E., Barak L. S., Wolf D. E., Elson E. L., Webb W. W. Lateral diffusion in planar lipid bilayers. Science. 1977 Jan 21;195(4275):305–306. doi: 10.1126/science.831279. [DOI] [PubMed] [Google Scholar]
  13. Gennerich A., Schild D. Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J. 2000 Dec;79(6):3294–3306. doi: 10.1016/S0006-3495(00)76561-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glaser M., Nulty W., Vagelos P. R. Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of Escherichia coli defective in membrane phospholipid biosynthesis. J Bacteriol. 1975 Jul;123(1):128–136. doi: 10.1128/jb.123.1.128-136.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goelz S. E., Cronan J. E., Jr Adenylate kinase of Escherichia coli: evidence for a functional interaction in phospholipid synthesis. Biochemistry. 1982 Jan 5;21(1):189–195. doi: 10.1021/bi00530a032. [DOI] [PubMed] [Google Scholar]
  16. Haupts U., Maiti S., Schwille P., Webb W. W. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13573–13578. doi: 10.1073/pnas.95.23.13573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hink M. A., Griep R. A., Borst J. W., van Hoek A., Eppink M. H., Schots A., Visser A. J. Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein. J Biol Chem. 2000 Jun 9;275(23):17556–17560. doi: 10.1074/jbc.M001348200. [DOI] [PubMed] [Google Scholar]
  18. Huss R. J., Glaser M. Identification and purification of an adenylate kinase-associated protein that influences the thermolability of adenylate kinase from a temperature-sensitive adk mutant of Escherichia coli. J Biol Chem. 1983 Nov 10;258(21):13370–13376. [PubMed] [Google Scholar]
  19. Jacobson K., Derzko Z., Wu E. S., Hou Y., Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J Supramol Struct. 1976;5(4):565(417)–576(428). doi: 10.1002/jss.400050411. [DOI] [PubMed] [Google Scholar]
  20. Jacobson K., Sheets E. D., Simson R. Revisiting the fluid mosaic model of membranes. Science. 1995 Jun 9;268(5216):1441–1442. doi: 10.1126/science.7770769. [DOI] [PubMed] [Google Scholar]
  21. Johnson D. R., Bhatnagar R. S., Knoll L. J., Gordon J. I. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem. 1994;63:869–914. doi: 10.1146/annurev.bi.63.070194.004253. [DOI] [PubMed] [Google Scholar]
  22. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Köhler R. H., Schwille P., Webb W. W., Hanson M. R. Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci. 2000 Nov;113(Pt 22):3921–3930. doi: 10.1242/jcs.113.22.3921. [DOI] [PubMed] [Google Scholar]
  24. Ljungquist-Höddelius P., Lirvall M., Wasteson A., Magnusson K. E. Lateral diffusion of PDGF beta-receptors in human fibroblasts. Biosci Rep. 1991 Feb;11(1):43–52. doi: 10.1007/BF01118604. [DOI] [PubMed] [Google Scholar]
  25. Müller J. D., Chen Y., Gratton E. Resolving heterogeneity on the single molecular level with the photon-counting histogram. Biophys J. 2000 Jan;78(1):474–486. doi: 10.1016/S0006-3495(00)76610-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Niv H., Gutman O., Henis Y. I., Kloog Y. Membrane interactions of a constitutively active GFP-Ki-Ras 4B and their role in signaling. Evidence from lateral mobility studies. J Biol Chem. 1999 Jan 15;274(3):1606–1613. doi: 10.1074/jbc.274.3.1606. [DOI] [PubMed] [Google Scholar]
  27. Paller M. S. Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity. J Membr Biol. 1994 Oct;142(1):127–135. doi: 10.1007/BF00233390. [DOI] [PubMed] [Google Scholar]
  28. Palmer A. G., 3rd, Thompson N. L. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys J. 1987 Aug;52(2):257–270. doi: 10.1016/S0006-3495(87)83213-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Politz J. C., Browne E. S., Wolf D. E., Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6043–6048. doi: 10.1073/pnas.95.11.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Qian H., Elson E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5479–5483. doi: 10.1073/pnas.87.14.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SHIMOMURA O., JOHNSON F. H., SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962 Jun;59:223–239. doi: 10.1002/jcp.1030590302. [DOI] [PubMed] [Google Scholar]
  32. Schwille P., Haupts U., Maiti S., Webb W. W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J. 1999 Oct;77(4):2251–2265. doi: 10.1016/S0006-3495(99)77065-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schwille P., Korlach J., Webb W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry. 1999 Jul 1;36(3):176–182. doi: 10.1002/(sici)1097-0320(19990701)36:3<176::aid-cyto5>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  34. Seksek O., Biwersi J., Verkman A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997 Jul 14;138(1):131–142. doi: 10.1083/jcb.138.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Starr T. E., Thompson N. L. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys J. 2001 Mar;80(3):1575–1584. doi: 10.1016/S0006-3495(01)76130-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Swaminathan R., Hoang C. P., Verkman A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997 Apr;72(4):1900–1907. doi: 10.1016/S0006-3495(97)78835-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  38. Utsumi T., Sato M., Nakano K., Takemura D., Iwata H., Ishisaka R. Amino acid residue penultimate to the amino-terminal gly residue strongly affects two cotranslational protein modifications, N-myristoylation and N-acetylation. J Biol Chem. 2000 Dec 20;276(13):10505–10513. doi: 10.1074/jbc.M006134200. [DOI] [PubMed] [Google Scholar]
  39. Wachsmuth M., Waldeck W., Langowski J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol. 2000 May 12;298(4):677–689. doi: 10.1006/jmbi.2000.3692. [DOI] [PubMed] [Google Scholar]
  40. Xu C., Zipfel W., Shear J. B., Williams R. M., Webb W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10763–10768. doi: 10.1073/pnas.93.20.10763. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES