Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):133–144. doi: 10.1016/S0006-3495(02)75380-0

Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy.

Yan Chen 1, Joachim D Müller 1, QiaoQiao Ruan 1, Enrico Gratton 1
PMCID: PMC1302455  PMID: 11751302

Abstract

We characterize the molecular properties of autofluorescence and transiently expressed EGFP in the nucleus and in the cytoplasm of HeLa cells by fluorescence correlation spectroscopy (FCS) and by photon counting histogram (PCH) analysis. PCH has been characterized and applied in vitro, but its potential for in vivo studies needs to be explored. Thus, this study mainly focuses on the characterization of PCH analysis in vivo. The strength of PCH lies in its ability to distinguish biomolecules by their molecular brightness value. Because the concept of molecular brightness is crucial for PCH analysis, we study the molecular brightness of EGFP and determine the statistical accuracy of its measurement under in vivo conditions. We started by characterizing the influence of autofluorescence on EGFP measurements. We found a molecular brightness of EGFP that is a factor of 10 higher than the brightness of the autofluorescence. Moment analysis demonstrates that the contribution of autofluorescence to fluorescence fluctuation experiments is negligible at EGFP concentrations of one protein per excitation volume. The molecular brightness of EGFP measured in the nucleus, the cytoplasm, and in vitro are identical and our study demonstrates that molecular brightness is a very stable and predictable quantity for cellular measurements. In addition to PCH, we also analyzed the autocorrelation function of EGFP. The diffusion coefficient of EGFP is a factor of 3 lower in vivo than compared to in vitro, and a simple diffusion process describes the autocorrelation function. We found that in the nucleus the fluorescence intensity is stable as a function of time, while measurements in the cytoplasm display fluorescence intensity drifts that complicate the data analysis. We introduce and discuss an analysis method that minimizes the influence of the intensity drifts on PCH analysis. This method allows us to recover the correct molecular brightness of EGFP even in the presence of drifts of the fluorescence intensity signal. We found the molecular brightness of EGFP to be a very robust parameter, and anticipate the use of PCH analysis for the study of oligomerization processes in vivo.

Full Text

The Full Text of this article is available as a PDF (142.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson H., Baechi T., Hoechl M., Richter C. Autofluorescence of living cells. J Microsc. 1998 Jul;191(Pt 1):1–7. doi: 10.1046/j.1365-2818.1998.00347.x. [DOI] [PubMed] [Google Scholar]
  2. Aubin J. E. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979 Jan;27(1):36–43. doi: 10.1177/27.1.220325. [DOI] [PubMed] [Google Scholar]
  3. Benson R. C., Meyer R. A., Zaruba M. E., McKhann G. M. Cellular autofluorescence--is it due to flavins? J Histochem Cytochem. 1979 Jan;27(1):44–48. doi: 10.1177/27.1.438504. [DOI] [PubMed] [Google Scholar]
  4. Berland K. M., So P. T., Chen Y., Mantulin W. W., Gratton E. Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J. 1996 Jul;71(1):410–420. doi: 10.1016/S0006-3495(96)79242-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berland K. M., So P. T., Gratton E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J. 1995 Feb;68(2):694–701. doi: 10.1016/S0006-3495(95)80230-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonnet G., Krichevsky O., Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8602–8606. doi: 10.1073/pnas.95.15.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boonen G., Pramanik A., Rigler R., Häberlein H. Evidence for specific interactions between kavain and human cortical neurons monitored by fluorescence correlation spectroscopy. Planta Med. 2000 Feb;66(1):7–10. doi: 10.1055/s-2000-11112. [DOI] [PubMed] [Google Scholar]
  8. Borejdo J. Motion of myosin fragments during actin-activated ATPase: fluorescence correlation spectroscopy study. Biopolymers. 1979 Nov;18(11):2807–2820. doi: 10.1002/bip.1979.360181111. [DOI] [PubMed] [Google Scholar]
  9. Brock R., Hink M. A., Jovin T. M. Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J. 1998 Nov;75(5):2547–2557. doi: 10.1016/S0006-3495(98)77699-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brock R., Vàmosi G., Vereb G., Jovin T. M. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10123–10128. doi: 10.1073/pnas.96.18.10123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen Y., Müller J. D., Berland K. M., Gratton E. Fluorescence fluctuation spectroscopy. Methods. 1999 Oct;19(2):234–252. doi: 10.1006/meth.1999.0854. [DOI] [PubMed] [Google Scholar]
  12. Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen Y., Müller J. D., Tetin S. Y., Tyner J. D., Gratton E. Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy. Biophys J. 2000 Aug;79(2):1074–1084. doi: 10.1016/S0006-3495(00)76361-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Croce A. C., Spano A., Locatelli D., Barni S., Sciola L., Bottiroli G. Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity. Photochem Photobiol. 1999 Mar;69(3):364–374. doi: 10.1562/0031-8655(1999)069<0364:dofapo>2.3.co;2. [DOI] [PubMed] [Google Scholar]
  15. Elson E. L., Schlessinger J., Koppel D. E., Axelrod D., Webb W. W. Measurement of lateral transport on cell surfaces. Prog Clin Biol Res. 1976;9:137–147. [PubMed] [Google Scholar]
  16. Fahey P. F., Koppel D. E., Barak L. S., Wolf D. E., Elson E. L., Webb W. W. Lateral diffusion in planar lipid bilayers. Science. 1977 Jan 21;195(4275):305–306. doi: 10.1126/science.831279. [DOI] [PubMed] [Google Scholar]
  17. Ferrer S., Haasnoot J. G., Reedijk J., Müller E., Cingi M. B., Lanfranchi M., Lanfredi A. M., Ribas J. Trinuclear N,N-bridged copper(II) complexes involving a Cu3OH core: [Cu3(mu 3-OH)L3A(H2O)2]A.(H2O)x (L = 3-acetylamino-1,2,4-triazolate; a = CF3SO3, NO3, ClO4; x = 0, 2) synthesis, X-ray structures, spectroscopy, and magnetic properties. Inorg Chem. 2000 May 1;39(9):1859–1867. doi: 10.1021/ic981393u. [DOI] [PubMed] [Google Scholar]
  18. Gosch M, Blom H, Holm J, Heino T, Rigler R. Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal Chem. 2000 Jul 15;72(14):3260–3265. doi: 10.1021/ac991448p. [DOI] [PubMed] [Google Scholar]
  19. Haupts U., Maiti S., Schwille P., Webb W. W. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13573–13578. doi: 10.1073/pnas.95.23.13573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hegedus Z. L., Altschule M. D., Nayak U. Soluble lipofuscin in commercially-available human serum albumin solutions. Arch Int Physiol Biochim. 1982 Apr;90(1):55–60. doi: 10.3109/13813458209082654. [DOI] [PubMed] [Google Scholar]
  21. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high DNA concentrations. Biopolymers. 1983 Aug;22(8):1949–1966. doi: 10.1002/bip.360220809. [DOI] [PubMed] [Google Scholar]
  22. Kao H. P., Abney J. R., Verkman A. S. Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol. 1993 Jan;120(1):175–184. doi: 10.1083/jcb.120.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kask P., Palo K., Ullmann D., Gall K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13756–13761. doi: 10.1073/pnas.96.24.13756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kneen M., Farinas J., Li Y., Verkman A. S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J. 1998 Mar;74(3):1591–1599. doi: 10.1016/S0006-3495(98)77870-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Koppel D. E., Morgan F., Cowan A. E., Carson J. H. Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys J. 1994 Feb;66(2 Pt 1):502–507. doi: 10.1016/s0006-3495(94)80801-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Köhler R. H., Schwille P., Webb W. W., Hanson M. R. Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci. 2000 Nov;113(Pt 22):3921–3930. doi: 10.1242/jcs.113.22.3921. [DOI] [PubMed] [Google Scholar]
  28. König K., So P. T., Mantulin W. W., Tromberg B. J., Gratton E. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microsc. 1996 Sep;183(Pt 3):197–204. [PubMed] [Google Scholar]
  29. Lang I., Scholz M., Peters R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol. 1986 Apr;102(4):1183–1190. doi: 10.1083/jcb.102.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6803–6808. doi: 10.1073/pnas.95.12.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Margeat E., Poujol N., Boulahtouf A., Chen Y., Müller J. D., Gratton E., Cavailles V., Royer C. A. The human estrogen receptor alpha dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J Mol Biol. 2001 Feb 23;306(3):433–442. doi: 10.1006/jmbi.2000.4418. [DOI] [PubMed] [Google Scholar]
  33. Meseth U., Wohland T., Rigler R., Vogel H. Resolution of fluorescence correlation measurements. Biophys J. 1999 Mar;76(3):1619–1631. doi: 10.1016/S0006-3495(99)77321-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Müller J. D., Chen Y., Gratton E. Resolving heterogeneity on the single molecular level with the photon-counting histogram. Biophys J. 2000 Jan;78(1):474–486. doi: 10.1016/S0006-3495(00)76610-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Niswender K. D., Blackman S. M., Rohde L., Magnuson M. A., Piston D. W. Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microsc. 1995 Nov;180(Pt 2):109–116. doi: 10.1111/j.1365-2818.1995.tb03665.x. [DOI] [PubMed] [Google Scholar]
  36. Palmer A. G., 3rd, Thompson N. L. High-order fluorescence fluctuation analysis of model protein clusters. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6148–6152. doi: 10.1073/pnas.86.16.6148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Patterson G. H., Knobel S. M., Sharif W. D., Kain S. R., Piston D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 1997 Nov;73(5):2782–2790. doi: 10.1016/S0006-3495(97)78307-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Petersen N. O., Höddelius P. L., Wiseman P. W., Seger O., Magnusson K. E. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J. 1993 Sep;65(3):1135–1146. doi: 10.1016/S0006-3495(93)81173-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Politz J. C., Browne E. S., Wolf D. E., Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6043–6048. doi: 10.1073/pnas.95.11.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Qian H., Elson E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5479–5483. doi: 10.1073/pnas.87.14.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Qian H., Elson E. L. On the analysis of high order moments of fluorescence fluctuations. Biophys J. 1990 Feb;57(2):375–380. doi: 10.1016/S0006-3495(90)82539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schwille P., Haupts U., Maiti S., Webb W. W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J. 1999 Oct;77(4):2251–2265. doi: 10.1016/S0006-3495(99)77065-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwille P., Korlach J., Webb W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry. 1999 Jul 1;36(3):176–182. doi: 10.1002/(sici)1097-0320(19990701)36:3<176::aid-cyto5>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  44. Seksek O., Biwersi J., Verkman A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997 Jul 14;138(1):131–142. doi: 10.1083/jcb.138.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Starr T. E., Thompson N. L. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys J. 2001 Mar;80(3):1575–1584. doi: 10.1016/S0006-3495(01)76130-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swaminathan R., Hoang C. P., Verkman A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997 Apr;72(4):1900–1907. doi: 10.1016/S0006-3495(97)78835-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thompson N. L., Axelrod D. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J. 1983 Jul;43(1):103–114. doi: 10.1016/S0006-3495(83)84328-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  49. Van Rompaey E., Chen Y., Müller J. D., Gratton E., Van Craenenbroeck E., Engelborghs Y., De Smedt S., Demeester J. Fluorescence fluctuation analysis for the study of interactions between oligonucleotides and polycationic polymers. Biol Chem. 2001 Mar;382(3):379–386. doi: 10.1515/BC.2001.046. [DOI] [PubMed] [Google Scholar]
  50. Wachsmuth M., Waldeck W., Langowski J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol. 2000 May 12;298(4):677–689. doi: 10.1006/jmbi.2000.3692. [DOI] [PubMed] [Google Scholar]
  51. Xu C., Zipfel W., Shear J. B., Williams R. M., Webb W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10763–10768. doi: 10.1073/pnas.93.20.10763. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES