Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Apr;38(1):7–13. doi: 10.1016/S0006-3495(82)84524-4

Photon correlation spectroscopic study of the size distribution of phospholipid vesicles.

J Goll, F D Carlson, Y Barenholz, B J Litman, T E Thompson
PMCID: PMC1328807  PMID: 7074200

Abstract

The dependence of phospholipid vesicle size on lipid composition is investigated by photon correlation spectroscopy. For each lipid composition prolonged ultracentrifugation was used to isolate a nearly uniform population of minimum-sized vesicles. The residual size variations in the samples were sufficient to cause polydispersity that made comparisons between samples difficult. Analyses of the data by the method of cumulants and by a method for approximating the particle size distributions directly are presented. The latter method made possible unambiguous comparisons that revealed small but systematic dependences of vesicle size on composition in vesicles containing mixtures of egg phosphatidylcholine and phosphatidylethanolamine, egg phosphatidylcholine and beef brain sphingomyelin, and in single lipid vesicles of egg phosphatidylcholine, dioleylphosphatidylcholine, and beef brain sphingomyelin. These size dependences are quantified within the resolution limits of the technique and their implications are discussed.

Full text

PDF
10

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  3. Barenholz Y., Thompson T. E. Sphingomyelins in bilayers and biological membranes. Biochim Biophys Acta. 1980 Sep 30;604(2):129–158. doi: 10.1016/0005-2736(80)90572-6. [DOI] [PubMed] [Google Scholar]
  4. Cooper V. G., Yedgar S., Barenholz Y. Diffusion coefficients of mixed micelles of Triton X-100 and sphingomyelin and of sonicated sphingomyelin liposomes, measured by autocorrelation spectroscopy of Rayleigh scattered light. Biochim Biophys Acta. 1974 Aug 21;363(1):86–97. doi: 10.1016/0005-2736(74)90008-x. [DOI] [PubMed] [Google Scholar]
  5. Goll J. H., Stock G. B. Determination by photon correlation spectroscopy of particle size distributions in lipid vesicle suspensions. Biophys J. 1977 Sep;19(3):265–273. doi: 10.1016/S0006-3495(77)85586-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang C., Lee L. Diffusion studies on phosphatidylcholine vesicles. J Am Chem Soc. 1973 Jan 10;95(1):234–239. doi: 10.1021/ja00782a042. [DOI] [PubMed] [Google Scholar]
  7. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  8. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  9. Lee A. G. Functional properties of biological membranes: a physical-chemical approach. Prog Biophys Mol Biol. 1975;29(1):3–56. doi: 10.1016/0079-6107(76)90019-5. [DOI] [PubMed] [Google Scholar]
  10. Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4521–4528. doi: 10.1021/bi00665a029. [DOI] [PubMed] [Google Scholar]
  11. Litman B. J. Lipid model membranes. Characterization of mixed phospholipid vesicles. Biochemistry. 1973 Jun 19;12(13):2545–2554. doi: 10.1021/bi00737a028. [DOI] [PubMed] [Google Scholar]
  12. Pagano R. E., Weinstein J. N. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–468. doi: 10.1146/annurev.bb.07.060178.002251. [DOI] [PubMed] [Google Scholar]
  13. Pownall H. J., Massey J. B., Kusserow S. K., Gotto A. M., Jr Kinetics of lipid--protein interactions: interaction of apolipoprotein A-I from human plasma high density lipoproteins with phosphatidylcholines. Biochemistry. 1978 Apr 4;17(7):1183–1188. doi: 10.1021/bi00600a008. [DOI] [PubMed] [Google Scholar]
  14. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  15. Stock G. B. Application of splines to the calculation of bacterial swimming speed distributions. Biophys J. 1976 May;16(5):535–540. doi: 10.1016/S0006-3495(76)85708-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sun S. T., Day E. P., Ho J. T. Temperature dependence of calcium-induced fusion of sonicated phosphatidylserine vesicles. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4325–4328. doi: 10.1073/pnas.75.9.4325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES