Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Dec;48(6):939–947. doi: 10.1016/S0006-3495(85)83857-1

On the adhesion of vesicles by cell adhesion molecules.

G I Bell, D C Torney
PMCID: PMC1329427  PMID: 4092071

Abstract

This paper gives a detailed analysis of experiments on the kinetics of aggregation of lipid vesicles containing neural cell adhesion molecules (N-CAM). An explanation for the dependence of the "initial aggregation rate," kagg, on the square of the vesicle concentration is given, accounting both for Brownian motion of the vesicles and shear effects. A model in which trimers of N-CAM are one-half of the molecular unit bridging two vesicles explains the observed dependence of kagg on up to the sixth power of the lateral N-CAM concentration and corroborates electron micrographic evidence for N-CAM "triskelions."

Full text

PDF
940

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I. Estimate of the sticking probability for cells in uniform shear flow with adhesion caused by specific bonds. Cell Biophys. 1981 Sep;3(3):289–304. doi: 10.1007/BF02782629. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  3. Chao N. M., Young S. H., Poo M. M. Localization of cell membrane components by surface diffusion into a "trap". Biophys J. 1981 Oct;36(1):139–153. doi: 10.1016/S0006-3495(81)84721-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham B. A., Hoffman S., Rutishauser U., Hemperly J. J., Edelman G. M. Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich and binding regions. Proc Natl Acad Sci U S A. 1983 May;80(10):3116–3120. doi: 10.1073/pnas.80.10.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
  6. Edelman G. M., Hoffman S., Chuong C. M., Thiery J. P., Brackenbury R., Gallin W. J., Grumet M., Greenberg M. E., Hemperly J. J., Cohen C. Structure and modulation of neural cell adhesion molecules in early and late embryogenesis. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):515–526. doi: 10.1101/sqb.1983.048.01.056. [DOI] [PubMed] [Google Scholar]
  7. Edelman G. M. Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annu Rev Neurosci. 1984;7:339–377. doi: 10.1146/annurev.ne.07.030184.002011. [DOI] [PubMed] [Google Scholar]
  8. Gall W. E., Edelman G. M. Lateral diffusion of surface molecules in animal cells and tissues. Science. 1981 Aug 21;213(4510):903–905. doi: 10.1126/science.7196087. [DOI] [PubMed] [Google Scholar]
  9. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Michl J., Pieczonka M. M., Unkeless J. C., Bell G. I., Silverstein S. C. Fc receptor modulation in mononuclear phagocytes maintained on immobilized immune complexes occurs by diffusion of the receptor molecule. J Exp Med. 1983 Jun 1;157(6):2121–2139. doi: 10.1084/jem.157.6.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rutishauser U. Developmental biology of a neural cell adhesion molecule. Nature. 1984 Aug 16;310(5978):549–554. doi: 10.1038/310549a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES