Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Feb;55(2):233–241. doi: 10.1016/S0006-3495(89)82798-5

Photolysis intermediates of the artificial visual pigment cis-5,6-dihydro-isorhodopsin.

A Albeck 1, N Friedman 1, M Ottolenghi 1, M Sheves 1, C M Einterz 1, S J Hug 1, J W Lewis 1, D S Kliger 1
PMCID: PMC1330464  PMID: 2713437

Abstract

The photolysis intermediates of an artificial bovine rhodopsin pigment, cis-5,6-dihydro-isorhodopsin (cis-5,6,-diH-ISORHO, lambda max 461 nm), which contains a cis-5,6-dihydro-9-cis-retinal chromophore, are investigated by room temperature, nanosecond laser photolysis, and low temperature irradiation studies. The observations are discussed both in terms of low temperature experiments of Yoshizawa and co-workers on trans-5,6-diH-ISORHO (Yoshizawa, T., Y. Shichida, and S. Matuoka. 1984. Vision Res. 24: 1455-1463), and in relation to the photolysis intermediates of native bovine rhodopsin (RHO). It is suggested that in 5,6-diH-ISORHO, a primary bathorhodopsin intermediate analogous to the bathorhodopsin intermediate (BATHO) of the native pigment, rapidly converts to a blue-shifted intermediate (BSI, lambda max 430 nm) which is not observed after photolysis of native rhodopsin. The analogs from lumirhodopsin (LUMI) to meta-II rhodopsin (META-II) are generated subsequent to BSI, similar to their generation from BATHO in the native pigment. It is proposed that the retinal chromophore in the bathorhodopsin stage of 5,6-diH-ISORHO is relieved of strain induced by the primary cis to trans isomerization by undergoing a geometrical rearrangement of the retinal. Such a rearrangement, which leads to BSI, would not take place so rapidly in the native pigment due to ring-protein interactions. In the native pigment, the strain in BATHO would be relieved only on a longer time scale, via a process with a rate determined by protein relaxation.

Full text

PDF
234

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birge R. R., Einterz C. M., Knapp H. M., Murray L. P. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Biophys J. 1988 Mar;53(3):367–385. doi: 10.1016/S0006-3495(88)83114-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boucher F., Leblanc R. M. Energy storage in the primary photoreaction of bovine rhodopsin. A photoacoustic study. Photochem Photobiol. 1985 Apr;41(4):459–465. doi: 10.1111/j.1751-1097.1985.tb03512.x. [DOI] [PubMed] [Google Scholar]
  3. Cooper A. Energy uptake in the first step of visual excitation. Nature. 1979 Nov 29;282(5738):531–533. doi: 10.1038/282531a0. [DOI] [PubMed] [Google Scholar]
  4. Einterz C. M., Lewis J. W., Kliger D. S. Spectral and kinetic evidence for the existence of two forms of bathorhodopsin. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3699–3703. doi: 10.1073/pnas.84.11.3699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eyring G., Curry B., Broek A., Lugtenburg J., Mathies R. Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. Biochemistry. 1982 Jan 19;21(2):384–393. doi: 10.1021/bi00531a028. [DOI] [PubMed] [Google Scholar]
  6. Eyring G., Curry B., Mathies R., Fransen R., Palings I., Lugtenburg J. Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues. Biochemistry. 1980 May 27;19(11):2410–2418. doi: 10.1021/bi00552a020. [DOI] [PubMed] [Google Scholar]
  7. Fukada Y., Shichida Y., Yoshizawa T., Ito M., Kodama A., Tsukida K. Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin. Biochemistry. 1984 Nov 20;23(24):5826–5832. doi: 10.1021/bi00319a023. [DOI] [PubMed] [Google Scholar]
  8. Honig B., Ebrey T., Callender R. H., Dinur U., Ottolenghi M. Photoisomerization, energy storage, and charge separation: a model for light energy transduction in visual pigments and bacteriorhodopsin. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2503–2507. doi: 10.1073/pnas.76.6.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hubbard R., Kropf A. THE ACTION OF LIGHT ON RHODOPSIN. Proc Natl Acad Sci U S A. 1958 Feb;44(2):130–139. doi: 10.1073/pnas.44.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lewis J. W., Miller J. L., Mendel-Hartvig J., Schaechter L. E., Kliger D. S., Dratz E. A. Sensitive light scattering probe of enzymatic processes in retinal rod photoreceptor membranes. Proc Natl Acad Sci U S A. 1984 Feb;81(3):743–747. doi: 10.1073/pnas.81.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maeda A., Shichida Y., Yoshizawa T. Formation of 7-cis- and 13-cis-retinal pigments by irradiating squid rhodopsin. Biochemistry. 1979 Apr 17;18(8):1449–1453. doi: 10.1021/bi00575a010. [DOI] [PubMed] [Google Scholar]
  12. Mao B., Tsuda M., Ebrey T. G., Akita H., Balogh-Nair V., Nakanishi K. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene. Biophys J. 1981 Aug;35(2):543–546. doi: 10.1016/S0006-3495(81)84809-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Muto O., Tokunaga F., Yoshizawa T., Kamat V., Blatchly H. A., Balogh-Nair V., Nakanishi K. Photochemical reaction of 7,8-dihydrorhodopsin at low temperatures. Biochim Biophys Acta. 1984 Sep 27;766(3):597–602. doi: 10.1016/0005-2728(84)90120-8. [DOI] [PubMed] [Google Scholar]
  14. Palings I., Pardoen J. A., van den Berg E., Winkel C., Lugtenburg J., Mathies R. A. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Biochemistry. 1987 May 5;26(9):2544–2556. doi: 10.1021/bi00383a021. [DOI] [PubMed] [Google Scholar]
  15. Peters K., Applebury M. L., Rentzepis P. M. Primary photochemical event in vision: proton translocation. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3119–3123. doi: 10.1073/pnas.74.8.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schick G. A., Cooper T. M., Holloway R. A., Murray L. P., Birge R. R. Energy storage in the primary photochemical events of rhodopsin and isorhodopsin. Biochemistry. 1987 May 5;26(9):2556–2562. doi: 10.1021/bi00383a022. [DOI] [PubMed] [Google Scholar]
  17. Shichida Y., Kropf A., Yoshizawa T. Photochemical reactions of 13-demethyl visual pigment analogues at low temperatures. Biochemistry. 1981 Mar 31;20(7):1962–1968. doi: 10.1021/bi00510a035. [DOI] [PubMed] [Google Scholar]
  18. Spudich J. L., McCain D. A., Nakanishi K., Okabe M., Shimizu N., Rodman H., Honig B., Bogomolni R. A. Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Biophys J. 1986 Feb;49(2):479–483. doi: 10.1016/S0006-3495(86)83657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yoshizawa T., Shichida Y., Matuoka S. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin. Vision Res. 1984;24(11):1455–1463. doi: 10.1016/0042-6989(84)90306-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES