Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1972 Oct;226(2):573–591. doi: 10.1113/jphysiol.1972.sp009998

The relation of Rushton's `liminal length' for excitation to the resting and active conductances of excitable cells

D Noble
PMCID: PMC1331195  PMID: 5085347

Abstract

1. The minimum (or liminal) length of an excitable cable that must lie above the inward current threshold in order to initiate propagation is derived using a simple polynomial representation of the ionic current—voltage relation.

2. This model is then used to obtain an approximate equation for the liminal length that may easily be applied to excitable cells using experimental measurements of the ionic current.

3. The equations are used to show that the liminal length in cardiac Purkinje fibres is expected to be much smaller than in squid nerve. The values calculated are similar to those obtained by Fozzard & Schoenberg (1972) from strength—duration curves.

4. It is shown that the strength—duration curve for non-uniform excitation is virtually independent of the resting membrane resistance. The strength—duration time constant may not, therefore, be related to the membrane time constant.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fozzard H. A., Schoenberg M. Strength-duration curves in cardiac Purkinje fibres: effects of liminal length and charge distribution. J Physiol. 1972 Nov;226(3):593–618. doi: 10.1113/jphysiol.1972.sp009999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GUTTMAN R. Effect of temperature on the potential and current thresholds of axon membrane. J Gen Physiol. 1962 Nov;46:257–266. doi: 10.1085/jgp.46.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grundfest H. Excitability of the single fibre nerve-muscle complex. J Physiol. 1932 Sep 16;76(1):95–115. doi: 10.1113/jphysiol.1932.sp002913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guttman R. Temperature characteristics of excitation in space-clamped squid axons. J Gen Physiol. 1966 May;49(5):1007–1018. doi: 10.1085/jgp.49.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mobley B. A., Page E. The surface area of sheep cardiac Purkinje fibres. J Physiol. 1972 Feb;220(3):547–563. doi: 10.1113/jphysiol.1972.sp009722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noble D., Hall A. E. The Conditions for Initiating "All-or-Nothing" Repolarization in Cardiac Muscle. Biophys J. 1963 Jul;3(4):261–274. doi: 10.1016/s0006-3495(63)86820-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Noble D., Stein R. B. The threshold conditions for initiation of action potentials by excitable cells. J Physiol. 1966 Nov;187(1):129–162. doi: 10.1113/jphysiol.1966.sp008079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES