Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Mar;213(3):683–689. doi: 10.1113/jphysiol.1971.sp009408

The membrane potential and permeabilities of the L cell membrane to Na, K and chloride

J F Lamb, M G A MacKinnon
PMCID: PMC1331749  PMID: 5102533

Abstract

1. The chloride content and fluxes, and the membrane potential of L cells have been measured.

2. L cells contain chloride, 70 m-mole/l. intracellular water and have a flux of 5·5 p-mole/cm2 sec.

3. The membrane potential is -15 mV.K-free Krebs causes an increase in Em and replacing chloride with sulphate causes a temporary reduction in Em.

4. These values for Em and chloride, and previously obtained values for Na and K fluxes and contents were used to calculate the permeabilities of the various ions using the Goldman constant field theory. This gave permeabilities of 6·3, 4·2 and 51 × 10-9 cm/sec for K, Na and chloride respectively, a ratio of 1:0·67:8·10.

5. It is concluded that these cells have a low membrane potential because the PK is some 100 times lower than in skeletal muscle, therefore leading to a PK of the same order as PNa.

Full text

PDF
684

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. Internal chloride concentration and chloride efflux of frog muscle. J Physiol. 1961 May;156:623–632. doi: 10.1113/jphysiol.1961.sp006698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borle A. B., Loveday J. Effects of temperature, potassium, and calcium on the electrical potential difference in HeLa cells. Cancer Res. 1968 Dec;28(12):2401–2405. [PubMed] [Google Scholar]
  3. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HEMPLING H. G. Potassium and sodium movements in the Ehrlich mouse ascites tumor cell. J Gen Physiol. 1958 Jan 20;41(3):565–583. doi: 10.1085/jgp.41.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1–37. doi: 10.1098/rspb.1958.0001. [DOI] [PubMed] [Google Scholar]
  7. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lamb J. F., MacKinnon M. G. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells. J Physiol. 1971 Mar;213(3):665–682. doi: 10.1113/jphysiol.1971.sp009407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schanne O., Coraboeuf E. Potential and resistance measurements of rat liver cells in situ. Nature. 1966 Jun 25;210(5043):1390–1391. doi: 10.1038/2101390a0. [DOI] [PubMed] [Google Scholar]
  11. WICKSON-GINZBURG M., SOLOMON A. K. ELECTROLYTE METABOLISM IN HELA CELLS. J Gen Physiol. 1963 Jul;46:1303–1315. doi: 10.1085/jgp.46.6.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES