Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Apr;214(1):29–50. doi: 10.1113/jphysiol.1971.sp009417

Presynaptic depolarization of myelinated afferent fibres evoked by stimulation of cutaneous C fibres

W Jänig, M Zimmermann
PMCID: PMC1331820  PMID: 5575364

Abstract

1. The origin of the dorsal root potential observed following a volley in cutaneous unmyelinated or C fibres (C-DRP) has been investigated by several assays.

2. Measurements of the spatial decrement of the C-DRP along the dorsal roots indicate that mainly the thick myelinated primary afferent fibres contribute to this C-DRP.

3. The spatial configuration of the intraspinal potential field during the course of the C-DRP is similar to that of the field correlated to the A-DRP, i.e. the DRP evoked by a volley in the A fibres of the same cutaneous nerve. It is concluded therefrom that both A- and C-DRPs signal presynaptic depolarizations of afferent fibres in the same regions of the dorsal horn.

4. Intrafibre recordings reveal that C input produces primary afferent depolarization (C-PAD) mainly in cutaneous and articular afferents, but not in muscle Group Ia afferents.

5. These findings and direct measurements of the interactions between A- and C-DRPs indicate that the pathways involved in A- and C-PAD exhibit convergence.

6. C-DRPs were also recorded from contralateral rootlets.

7. Some functional aspects of the PAD produced by an afferent volley in C fibres are discussed.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYD I. A. The histological structure of the receptors in the knee-joint of the cat correlated with their physiological response. J Physiol. 1954 Jun 28;124(3):476–488. doi: 10.1113/jphysiol.1954.sp005122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barron D. H., Matthews B. H. The interpretation of potential changes in the spinal cord. J Physiol. 1938 Apr 14;92(3):276–321. doi: 10.1113/jphysiol.1938.sp003603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bessou P., Perl E. R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol. 1969 Nov;32(6):1025–1043. doi: 10.1152/jn.1969.32.6.1025. [DOI] [PubMed] [Google Scholar]
  4. Brown A. G., Iggo A. A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J Physiol. 1967 Dec;193(3):707–733. doi: 10.1113/jphysiol.1967.sp008390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgess P. R., Clark F. J. Characteristics of knee joint receptors in the cat. J Physiol. 1969 Aug;203(2):317–335. doi: 10.1113/jphysiol.1969.sp008866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgess P. R., Petit D., Warren R. M. Receptor types in cat hairy skin supplied by myelinated fibers. J Neurophysiol. 1968 Nov;31(6):833–848. doi: 10.1152/jn.1968.31.6.833. [DOI] [PubMed] [Google Scholar]
  7. ECCLES J. C., ECCLES R. M., LUNDBERG A. Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J Physiol. 1957 May 23;136(3):527–546. doi: 10.1113/jphysiol.1957.sp005778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ECCLES J. C., KOSTYUK P. G., SCHMIDT R. F. Central pathways responsible for depolarization of primary afferent fibres. J Physiol. 1962 May;161:237–257. doi: 10.1113/jphysiol.1962.sp006884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ECCLES J. C., KOSTYUK P. G., SCHMIDT R. F. Presynaptic inhibition of the central actions of flexor reflex afferents. J Physiol. 1962 May;161:258–281. doi: 10.1113/jphysiol.1962.sp006885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ECCLES J. C., KOZAK W., MAGNI F. Dorsal root reflexes of muscle group I afferent fibres. J Physiol. 1961 Nov;159:128–146. doi: 10.1113/jphysiol.1961.sp006797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ECCLES R. M., HOLMQVIST B., VOORHOEVE P. E. PRESYNAPTIC DEPOLARIZATION OF CUTANEOUS AFFERENTS BY VOLLEYS IN CONTRALATERAL MUSCLE AFFERENTS. Acta Physiol Scand. 1964 Dec;62:474–484. doi: 10.1111/j.1748-1716.1964.tb10445.x. [DOI] [PubMed] [Google Scholar]
  12. ECCLES R. M., HOLMQVIST B., VOORHOEVE P. E. PRESYNAPTIC INHIBITION FROM CONTRALATERAL CUTANEOUS AFFERENT FIBRES. Acta Physiol Scand. 1964 Dec;62:464–473. doi: 10.1111/j.1748-1716.1964.tb10444.x. [DOI] [PubMed] [Google Scholar]
  13. Eccles J. C., Magni F., Willis W. D. Depolarization of central terminals of Group I afferent fibres from muscle. J Physiol. 1962 Jan;160(1):62–93. doi: 10.1113/jphysiol.1962.sp006835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franz D. N., Iggo A. Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol. 1968 Dec;199(2):319–345. doi: 10.1113/jphysiol.1968.sp008656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franz D. N., Iggo A. Dorsal root potentials and ventral root reflexes evoked by nonmyelinated fibers. Science. 1968 Dec 6;162(3858):1140–1142. doi: 10.1126/science.162.3858.1140. [DOI] [PubMed] [Google Scholar]
  16. HENSEL H., IGGO A., WITT I. A quantitative study of sensitive cutaneous thermoreceptors with C afferent fibres. J Physiol. 1960 Aug;153:113–126. doi: 10.1113/jphysiol.1960.sp006522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. IGGO A. Cutaneous heat and cold receptors with slowly conducting (C) afferent fibres. Q J Exp Physiol Cogn Med Sci. 1959 Oct;44:362–370. doi: 10.1113/expphysiol.1959.sp001417. [DOI] [PubMed] [Google Scholar]
  18. IGGO A. Cutaneous mechanoreceptors with afferent C fibres. J Physiol. 1960 Jul;152:337–353. doi: 10.1113/jphysiol.1960.sp006491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. IGGO A. The electrophysiological identification of single nerve fibres, with particular reference to the slowest-conducting vagal afferent fibres in the cat. J Physiol. 1958 Jun 18;142(1):110–126. doi: 10.1113/jphysiol.1958.sp006002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. IRIUCHIJIMA J., ZOTTERMAN Y. The specificity of afferent cutaneous C fibres in mammals. Acta Physiol Scand. 1960 Jul 15;49:267–278. doi: 10.1111/j.1748-1716.1960.tb01952.x. [DOI] [PubMed] [Google Scholar]
  21. Iggo A., Muir A. R. The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol. 1969 Feb;200(3):763–796. doi: 10.1113/jphysiol.1969.sp008721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jänig W., Schmidt R. F., Zimmermann M. Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp Brain Res. 1968;6(2):116–129. doi: 10.1007/BF00239166. [DOI] [PubMed] [Google Scholar]
  23. KOKETSU K. Intracellular slow potential of dorsal root fibers. Am J Physiol. 1956 Feb;184(2):338–344. doi: 10.1152/ajplegacy.1956.184.2.338. [DOI] [PubMed] [Google Scholar]
  24. LAPORTE Y., BESSOU P. Etude des sous-groupes lent et rapide du groupe I (fibres afférentes d'origine musculaire de grand diamètre) chez le chat. J Physiol (Paris) 1957 Nov;49(5):1025–1037. [PubMed] [Google Scholar]
  25. LLOYD D. P. C. Electrotonus in dorsal nerve roots. Cold Spring Harb Symp Quant Biol. 1952;17:203–219. doi: 10.1101/sqb.1952.017.01.020. [DOI] [PubMed] [Google Scholar]
  26. MENDELL L. M., WALL P. D. PRESYNAPTIC HYPERPOLARIZATION: A ROLE FOR FINE AFFERENT FIBRES. J Physiol. 1964 Aug;172:274–294. doi: 10.1113/jphysiol.1964.sp007417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MENDELL L. M., WALL P. D. RESPONSES OF SINGLE DORSAL CORD CELLS TO PERIPHERAL CUTANEOUS UNMYELINATED FIBRES. Nature. 1965 Apr 3;206:97–99. doi: 10.1038/206097a0. [DOI] [PubMed] [Google Scholar]
  28. Manfredi M. Modulation of sensory projections in anterolateral column of cat spinal cord by peripheral afferents of different size. Arch Ital Biol. 1970 Jan;108(1):72–105. [PubMed] [Google Scholar]
  29. Melzack R., Wall P. D. Pain mechanisms: a new theory. Science. 1965 Nov 19;150(3699):971–979. doi: 10.1126/science.150.3699.971. [DOI] [PubMed] [Google Scholar]
  30. Mendell L. M. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol. 1966 Nov;16(3):316–332. doi: 10.1016/0014-4886(66)90068-9. [DOI] [PubMed] [Google Scholar]
  31. Mendell L. Positive dorsal root potentials produced by stimulaton of small diameter muscle afferents. Brain Res. 1970 Mar 3;18(2):375–379. doi: 10.1016/0006-8993(70)90339-2. [DOI] [PubMed] [Google Scholar]
  32. STAMPFLI R. Bau und Funktion isolierter markhaltiger Nervenfasern. Ergeb Physiol. 1952;47:70–165. [PubMed] [Google Scholar]
  33. Vyklický L., Rudomin P., Zajac F. E., 3rd, Burke R. E. Primary afferent depolarization evoked by a painful stimulus. Science. 1969 Jul 11;165(3889):184–186. doi: 10.1126/science.165.3889.184. [DOI] [PubMed] [Google Scholar]
  34. WALL P. D. Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol. 1958 Jun 18;142(1):1–21. doi: 10.1113/jphysiol.1958.sp005997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zimmermann M. Dorsal root potentials after C-fiber stimulation. Science. 1968 May 24;160(3830):896–898. doi: 10.1126/science.160.3830.896. [DOI] [PubMed] [Google Scholar]
  36. Zimmermann M. Selective activation of C-fibers. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(4):329–333. doi: 10.1007/BF00362643. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES