Abstract
1. A study has been made of the effects of changing the external calcium concentration [Ca]o on the binomial parameters p and n that control the average quantal content (m̄) of the end-plate potential (e.p.p.) during trains of nerve impulses at synapses in amphibian striated muscle.
2. In high external calcium concentrations (0·4 mM ≤ [Ca]o < 1·0 mM) the increase in m̄ of a test impulse following a conditioning impulse at different intervals (< 100 msec) was due to an increase in the number of quanta available for release, n; the increase in m̄ of successive e.p.p.s in a short high frequency train was primarily due to an increase in n.
3. In high external calcium concentrations (1·0 mM ≤ [Ca]o < 10 mM) there was a decrease in m̄ of a test impulse following a short high frequency conditioning train (4-5 impulses, 20-100 Hz) at different intervals (200 msec < 5 sec) and this was due to a decrease in the number of quanta available for release, n; in a long high frequency train (20 impulses, 20-100 Hz) there was an increase in m̄ for the first few successive e.p.p.s followed by a depression of m̄ which eventually reached a steady state and these changes in m̄ were due to changes in n; the higher the frequency the greater was the depression in n during the steady-state period.
4. In high calcium concentrations, the steady-state m̄ reached in the first 20 impulses during continual stimulation at high frequency gave way to a decline in m̄ over several minutes until a new depressed steady-state value of m̄ was reached and this was maintained during the longest periods of stimulation (30 min); this decline in m̄ was primarily due to a decline in the number of quanta available for release.
5. These changes in the number of quanta available for release during trains of impulses are predicted in terms of a hypothesis in which facilitation is due to the accumulation of a residual calcium-receptor complex in the nerve terminal that determines the fraction of a pool of quanta which contributes to n, and depression is due to a decrease in the number of quanta in this pool.
Full text
PDF![673](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/c5021323e850/jphysiol00798-0114.png)
![674](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/b13adc12bd6d/jphysiol00798-0115.png)
![675](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/3b17ee84dd1b/jphysiol00798-0116.png)
![676](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/4279d472f012/jphysiol00798-0117.png)
![677](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/d5f52e762082/jphysiol00798-0118.png)
![678](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/00b67340e865/jphysiol00798-0119.png)
![679](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/502081bf6a56/jphysiol00798-0120.png)
![680](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/2a908a662bab/jphysiol00798-0121.png)
![681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/f3aaa4207b30/jphysiol00798-0122.png)
![682](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/8d27c731d7ed/jphysiol00798-0123.png)
![683](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/0baf0dfa6771/jphysiol00798-0124.png)
![684](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/67082e486bd0/jphysiol00798-0125.png)
![685](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/85bebc200477/jphysiol00798-0126.png)
![686](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/d8cb1ca2947d/jphysiol00798-0127.png)
![687](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/e2393268321b/jphysiol00798-0128.png)
![688](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/6cbe23c48d5d/jphysiol00798-0129.png)
![689](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/90de8685d810/jphysiol00798-0130.png)
![690](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/875488567a77/jphysiol00798-0131.png)
![691](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/7699954f18f4/jphysiol00798-0132.png)
![692](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/7ce3a7c643ba/jphysiol00798-0133.png)
![693](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/f87f30c0aec0/jphysiol00798-0134.png)
![694](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/da530e2e4187/jphysiol00798-0135.png)
![695](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/06f6e8474220/jphysiol00798-0136.png)
![696](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/693f472fb316/jphysiol00798-0137.png)
![697](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/c9f811a4e649/jphysiol00798-0138.png)
![698](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b10/1353627/8fa91661abf2/jphysiol00798-0139.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett E. F., Stevens C. F. The kinetics of transmitter release at the frog neuromuscular junction. J Physiol. 1972 Dec;227(3):691–708. doi: 10.1113/jphysiol.1972.sp010054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Fisher C., Florin T., Quine M., Robinson J. The effect of calcium ions and temperature on the binomial parameters that control acetylcholine release by a nerve impulse at amphibian neuromuscular synapses. J Physiol. 1977 Oct;271(3):641–672. doi: 10.1113/jphysiol.1977.sp012019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Florin T. A statistical analysis of the release of acetylcholine at newly formed synapses in striated muscle. J Physiol. 1974 Apr;238(1):93–107. doi: 10.1113/jphysiol.1974.sp010512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Florin T., Hall R. The effect of calcium ions on the binomial statistic parameters which control acetylcholine release at synapses in striated muscle. J Physiol. 1975 May;247(2):429–446. doi: 10.1113/jphysiol.1975.sp010939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Florin T., Pettigrew A. G. The effect of calcium ions on the binomial statistic parameters that control acetylcholine release at preganglionic nerve terminals. J Physiol. 1976 Jun;257(3):597–620. doi: 10.1113/jphysiol.1976.sp011387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., McLachlan E. M. An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J Physiol. 1972 Mar;221(3):657–668. doi: 10.1113/jphysiol.1972.sp009774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., McLachlan E. M. An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J Physiol. 1972 Mar;221(3):669–682. doi: 10.1113/jphysiol.1972.sp009775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Pettigrew A. G. The formation of synapses in amphibian striated muscle during development. J Physiol. 1975 Oct;252(1):203–239. doi: 10.1113/jphysiol.1975.sp011141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betz W. J. Depression of transmitter release at the neuromuscular junction of the frog. J Physiol. 1970 Mar;206(3):629–644. doi: 10.1113/jphysiol.1970.sp009034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown T. H., Perkel D. H., Feldman M. W. Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2913–2917. doi: 10.1073/pnas.73.8.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodge F. A., Jr, Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol. 1967 Nov;193(2):419–432. doi: 10.1113/jphysiol.1967.sp008367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elmqvist D., Quastel D. M. A quantitative study of end-plate potentials in isolated human muscle. J Physiol. 1965 Jun;178(3):505–529. doi: 10.1113/jphysiol.1965.sp007639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartzell H. C., Kuffler S. W., Yoshikami D. Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J Physiol. 1975 Oct;251(2):427–463. doi: 10.1113/jphysiol.1975.sp011102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatt H., Smith D. O. Synaptic depression related to presynaptic axon conduction block. J Physiol. 1976 Jul;259(2):367–393. doi: 10.1113/jphysiol.1976.sp011471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LILEY A. W., NORTH K. A. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol. 1953 Sep;16(5):509–527. doi: 10.1152/jn.1953.16.5.509. [DOI] [PubMed] [Google Scholar]
- Linder T. M. Calcium and facilitation at two classes of crustacean neuromuscular synapses. J Gen Physiol. 1973 Jan;61(1):56–73. doi: 10.1085/jgp.61.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magleby K. L. The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction. J Physiol. 1973 Oct;234(2):327–352. doi: 10.1113/jphysiol.1973.sp010348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallart A., Martin A. R. An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J Physiol. 1967 Dec;193(3):679–694. doi: 10.1113/jphysiol.1967.sp008388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallart A., Martin A. R. The relation between quantum content and facilitation at the neuromuscular junction of the frog. J Physiol. 1968 Jun;196(3):593–604. doi: 10.1113/jphysiol.1968.sp008525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. Estimation of parameters for a model of transmitter release at synapses. Biometrics. 1976 Mar;32(1):61–68. [PubMed] [Google Scholar]
- Stinnakre J., Tauc L. Calcium influx in active Aplysia neurones detected by injected aequorin. Nat New Biol. 1973 Mar 28;242(117):113–115. doi: 10.1038/newbio242113b0. [DOI] [PubMed] [Google Scholar]
- TAKEUCHI A. The long-lasting depression in neuromuscular transmission of frog. Jpn J Physiol. 1958 Jun 15;8(2):102–113. doi: 10.2170/jjphysiol.8.102. [DOI] [PubMed] [Google Scholar]
- THIES R. E. NEUROMUSCULAR DEPRESSION AND THE APPARENT DEPLETION OF TRANSMITTER IN MAMMALIAN MUSCLE. J Neurophysiol. 1965 May;28:428–442. doi: 10.1152/jn.1965.28.3.427. [DOI] [PubMed] [Google Scholar]
- Weinreich D. Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog. J Physiol. 1971 Jan;212(2):431–446. doi: 10.1113/jphysiol.1971.sp009333. [DOI] [PMC free article] [PubMed] [Google Scholar]