Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1963 Nov;169(1):91–115. doi: 10.1113/jphysiol.1963.sp007243

Dependence of resting and action potentials on internal potassium in perfused squid giant axons

T Narahashi
PMCID: PMC1368704  PMID: 14078066

Full text

PDF
115

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. Potassium chloride movement and the membrane potential of frog muscle. J Physiol. 1960 Apr;151:154–185. [PMC free article] [PubMed] [Google Scholar]
  2. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the protoplasm of a giant nerve fibre with artificial solutions. Nature. 1961 Jun 3;190:885–887. doi: 10.1038/190885a0. [DOI] [PubMed] [Google Scholar]
  5. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHANG J. J., SCHMIDT R. F. Prolonged action potentials and regenerative hyperpolarizing responses in Purkinje fibers of mammalian heart. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;272:127–141. doi: 10.1007/BF00420020. [DOI] [PubMed] [Google Scholar]
  7. FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol. 1960 May;43:867–896. doi: 10.1085/jgp.43.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GEORGE E. P., JOHNSON E. A. Solutions of the Hodgkin-Huxley equations for squid axon treated with tetraethylammonium and in potassium-rich media. Aust J Exp Biol Med Sci. 1961 Jun;39:275–293. doi: 10.1038/icb.1961.28. [DOI] [PubMed] [Google Scholar]
  10. GIBBS C. L., JOHNSON E. A. Intracellular ionic injection in rabbit ventricular fibres. Aust J Exp Biol Med Sci. 1962 Apr;40:85–92. doi: 10.1038/icb.1962.11. [DOI] [PubMed] [Google Scholar]
  11. GRUNDFEST H., KAO C. Y., ALTAMIRANO M. Bioelectric effects of ions microinjected into the giant axon of Loligo. J Gen Physiol. 1954 Nov 20;38(2):245–282. doi: 10.1085/jgp.38.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KOKETSU K., KIMURA Y. The resting potential and intracellular potassium of skeletal muscle in frogs. J Cell Comp Physiol. 1960 Jun;55:239–244. doi: 10.1002/jcp.1030550305. [DOI] [PubMed] [Google Scholar]
  17. MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
  18. OIKAWA T., SPYROPOULOS C. S., TASAKI I., TEORELL T. Methods for perfusing the giant axon of Loligo pealii. Acta Physiol Scand. 1961 Jun;52:195–196. doi: 10.1111/j.1748-1716.1961.tb02218.x. [DOI] [PubMed] [Google Scholar]
  19. OOYAMA H., WRIGHT E. B. Activity of potassium mechanism in single Ranvier node during excitation. J Neurophysiol. 1962 Jan;25:67–93. doi: 10.1152/jn.1962.25.1.67. [DOI] [PubMed] [Google Scholar]
  20. REUBEN J. P., WERMAN R., GRUNDFEST H. The ionic mechanisms of hyperpolarizing responses in lobster muscle fibers. J Gen Physiol. 1961 Nov;45:243–265. doi: 10.1085/jgp.45.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SEGAL J. R. An anodal threshold phenomenon in the squid giant axon. Nature. 1958 Nov 15;182(4646):1370–1370. doi: 10.1038/1821370a0. [DOI] [PubMed] [Google Scholar]
  22. STAEMPFLI R. Is the resting potential of Ranvier nodes a potassium potential? Ann N Y Acad Sci. 1959 Aug 28;81:265–284. doi: 10.1111/j.1749-6632.1959.tb49313.x. [DOI] [PubMed] [Google Scholar]
  23. STEPHENSON W. K. Membrane potential changes and ion movements in the frog sartorius muscle. J Cell Physiol. 1957 Aug;50(1):105–128. doi: 10.1002/jcp.1030500108. [DOI] [PubMed] [Google Scholar]
  24. TASAKI I. Demonstration of two stable states of the nerve membrane in potassium-rich media. J Physiol. 1959 Oct;148:306–331. doi: 10.1113/jphysiol.1959.sp006290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. TASAKII, SHIMAMURA M. Further observations on resting and action potential of intracellularly perfused squid axon. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1571–1577. doi: 10.1073/pnas.48.9.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TASAKII, WATANABE A., TAKENAKA T. Resting and action potential of intracellularly perfused squid giant axon. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1177–1184. doi: 10.1073/pnas.48.7.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TOBIAS J. M. Experimentally altered structure related to function in the lobster axon with an extrapolation to molecular mechanisms in excitation. J Cell Physiol. 1958 Aug;52(1):89–125. doi: 10.1002/jcp.1030520107. [DOI] [PubMed] [Google Scholar]
  28. TOBIAS J. M. Injury and membrane potentials in frog muscle after depleting potassium and producing other changes by soaking in potassium free salt solution or distilled water. J Cell Physiol. 1950 Aug;36(1):1–13. doi: 10.1002/jcp.1030360102. [DOI] [PubMed] [Google Scholar]
  29. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. WRIGHT E. B., OOYAMA H. Role of cations, potassium, calcium, and sodium during excitation of frog single nerve fiber. J Neurophysiol. 1962 Jan;25:94–109. doi: 10.1152/jn.1962.25.1.94. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES