Skip to main content
RNA logoLink to RNA
. 2000 Nov;6(11):1672–1680. doi: 10.1017/s135583820000128x

Use of terbium as a probe of tRNA tertiary structure and folding.

M R Hargittai 1, K Musier-Forsyth 1
PMCID: PMC1370035  PMID: 11105765

Abstract

Lanthanide metals such as terbium have previously been shown to be useful for mapping metal-binding sites in RNA. Terbium binds to the same sites on RNA as magnesium, however, with a much higher affinity. Thus, low concentrations of terbium ions can easily displace magnesium and promote phosphodiester backbone scission. At higher concentrations, terbium cleaves RNA in a sequence-independent manner, with a preference for single-stranded, non-Watson-Crick base-paired regions. Here, we show that terbium is a sensitive probe of human tRNALys,3 tertiary structure and folding. When 1 microM tRNA is used, the optimal terbium ion concentration for detecting Mg2+-induced tertiary structural changes is 50-60 microM. Using these concentrations of RNA and terbium, a magnesium-dependent folding transition with a midpoint (KMg) of 2.6 mM is observed for unmodified human tRNALys,3. At lower Tb3+ concentrations, cleavage is restricted to nucleotides that constitute specific metal-binding pockets. This small chemical probe should also be useful for detecting protein induced structural changes in RNA.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. F., Lot S. S., Kringel J., Cheng-Flournoy S., Villiet P., Sasmor H. M., Siwkowski A. M., Chappell L. L., Morrow J. R. Oligonucleotide-europium complex conjugate designed to cleave the 5' cap structure of the ICAM-1 transcript potentiates antisense activity in cells. Nucleic Acids Res. 1999 Mar 15;27(6):1547–1551. doi: 10.1093/nar/27.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barat C., Lullien V., Schatz O., Keith G., Nugeyre M. T., Grüninger-Leitch F., Barré-Sinoussi F., LeGrice S. F., Darlix J. L. HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J. 1989 Nov;8(11):3279–3285. doi: 10.1002/j.1460-2075.1989.tb08488.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Branum M. E., Que L., Jr Double-strand DNA hydrolysis by dilanthanide complexes. J Biol Inorg Chem. 1999 Oct;4(5):593–600. doi: 10.1007/s007750050382. [DOI] [PubMed] [Google Scholar]
  4. Brown R. S., Dewan J. C., Klug A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry. 1985 Aug 27;24(18):4785–4801. doi: 10.1021/bi00339a012. [DOI] [PubMed] [Google Scholar]
  5. Chan B., Musier-Forsyth K. The nucleocapsid protein specifically anneals tRNALys-3 onto a noncomplementary primer binding site within the HIV-1 RNA genome in vitro. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13530–13535. doi: 10.1073/pnas.94.25.13530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan B., Weidemaier K., Yip W. T., Barbara P. F., Musier-Forsyth K. Intra-tRNA distance measurements for nucleocapsid proteindependent tRNA unwinding during priming of HIV reverse transcription. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):459–464. doi: 10.1073/pnas.96.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ciesiołka J., Marciniec T., Krzyzosiak W. Probing the environment of lanthanide binding sites in yeast tRNA(Phe) by specific metal-ion-promoted cleavages. Eur J Biochem. 1989 Jun 15;182(2):445–450. doi: 10.1111/j.1432-1033.1989.tb14851.x. [DOI] [PubMed] [Google Scholar]
  8. Ciesiołka J., Wrzesinski J., Górnicki P., Podkowiński J., Krzyzosiak W. J. Analysis of magnesium, europium and lead binding sites in methionine initiator and elongator tRNAs by specific metal-ion-induced cleavages. Eur J Biochem. 1989 Dec 8;186(1-2):71–77. doi: 10.1111/j.1432-1033.1989.tb15179.x. [DOI] [PubMed] [Google Scholar]
  9. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  10. Das A. T., Koken S. E., Essink B. B., van Wamel J. L., Berkhout B. Human immunodeficiency virus uses tRNA(Lys,3) as primer for reverse transcription in HeLa-CD4+ cells. FEBS Lett. 1994 Mar 14;341(1):49–53. doi: 10.1016/0014-5793(94)80238-6. [DOI] [PubMed] [Google Scholar]
  11. Dorner S., Barta A. Probing ribosome structure by europium-induced RNA cleavage. Biol Chem. 1999 Feb;380(2):243–251. doi: 10.1515/BC.1999.032. [DOI] [PubMed] [Google Scholar]
  12. Draper D. E. On the coordination properties of Eu3+ bound to tRNA. Biophys Chem. 1985 Feb;21(2):91–101. doi: 10.1016/0301-4622(85)85011-0. [DOI] [PubMed] [Google Scholar]
  13. Friederich M. W., Hagerman P. J. The angle between the anticodon and aminoacyl acceptor stems of yeast tRNA(Phe) is strongly modulated by magnesium ions. Biochemistry. 1997 May 20;36(20):6090–6099. doi: 10.1021/bi970066f. [DOI] [PubMed] [Google Scholar]
  14. Gast F. U., Kempe D., Spieker R. L., Sänger H. L. Secondary structure probing of potato spindle tuber viroid (PSTVd) and sequence comparison with other small pathogenic RNA replicons provides evidence for central non-canonical base-pairs, large A-rich loops, and a terminal branch. J Mol Biol. 1996 Oct 11;262(5):652–670. doi: 10.1006/jmbi.1996.0543. [DOI] [PubMed] [Google Scholar]
  15. Hall J., Hüsken D., Häner R. Towards artificial ribonucleases: the sequence-specific cleavage of RNA in a duplex. Nucleic Acids Res. 1996 Sep 15;24(18):3522–3526. doi: 10.1093/nar/24.18.3522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hall J., Hüsken D., Pieles U., Moser H. E., Häner R. Efficient sequence-specific cleavage of RNA using novel europium complexes conjugated to oligonucleotides. Chem Biol. 1994 Nov;1(3):185–190. doi: 10.1016/1074-5521(94)90008-6. [DOI] [PubMed] [Google Scholar]
  17. Hingerty B., Brown R. S., Jack A. Further refinement of the structure of yeast tRNAPhe. J Mol Biol. 1978 Sep 25;124(3):523–534. doi: 10.1016/0022-2836(78)90185-7. [DOI] [PubMed] [Google Scholar]
  18. Holbrook S. R., Sussman J. L., Warrant R. W., Church G. M., Kim S. H. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe. Nucleic Acids Res. 1977 Aug;4(8):2811–2820. doi: 10.1093/nar/4.8.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horrocks W. D., Jr Luminescence spectroscopy. Methods Enzymol. 1993;226:495–538. doi: 10.1016/0076-6879(93)26023-3. [DOI] [PubMed] [Google Scholar]
  20. Isel C., Ehresmann C., Keith G., Ehresmann B., Marquet R. Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). J Mol Biol. 1995 Mar 24;247(2):236–250. doi: 10.1006/jmbi.1994.0136. [DOI] [PubMed] [Google Scholar]
  21. Jones C. R., Kearns D. R. Investigation of the structure of yeast tRNAphe by nuclear magnetic resonance: paramagnetic rare earth ion probes of structure. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4237–4240. doi: 10.1073/pnas.71.10.4237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kayne M. S., Cohn M. Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA. Biochemistry. 1974 Sep 24;13(20):4159–4165. doi: 10.1021/bi00717a014. [DOI] [PubMed] [Google Scholar]
  23. Khan R., Chang H. O., Kaluarachchi K., Giedroc D. P. Interaction of retroviral nucleocapsid proteins with transfer RNAPhe: a lead ribozyme and 1H NMR study. Nucleic Acids Res. 1996 Sep 15;24(18):3568–3575. doi: 10.1093/nar/24.18.3568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Komiyama M. Sequence-specific and hydrolytic scission of DNA and RNA by lanthanide complex-oligoDNA hybrids. J Biochem. 1995 Oct;118(4):665–670. doi: 10.1093/oxfordjournals.jbchem.a124961. [DOI] [PubMed] [Google Scholar]
  25. Latham J. A., Cech T. R. Defining the inside and outside of a catalytic RNA molecule. Science. 1989 Jul 21;245(4915):276–282. doi: 10.1126/science.2501870. [DOI] [PubMed] [Google Scholar]
  26. Maglott E. J., Deo S. S., Przykorska A., Glick G. D. Conformational transitions of an unmodified tRNA: implications for RNA folding. Biochemistry. 1998 Nov 17;37(46):16349–16359. doi: 10.1021/bi981722u. [DOI] [PubMed] [Google Scholar]
  27. Marciniec T., Ciesiołka J., Wrzesinski J., Krzyzosiak W. J. Identification of the magnesium, europium and lead binding sites in E. coli and lupine tRNAPhe by specific metal ion-induced cleavages. FEBS Lett. 1989 Jan 30;243(2):293–298. doi: 10.1016/0014-5793(89)80148-6. [DOI] [PubMed] [Google Scholar]
  28. Matsumura K., Komiyama M. Enormously fast RNA hydrolysis by lanthanide(III) ions under physiological conditions: eminent candidates for novel tools of biotechnology. J Biochem. 1997 Aug;122(2):387–394. doi: 10.1093/oxfordjournals.jbchem.a021765. [DOI] [PubMed] [Google Scholar]
  29. Michałowski D., Wrzesinski J., Ciesiołka J., Krzyzosiak W. J. Effect of modified nucleotides on structure of yeast tRNA(Phe). Comparative studies by metal ion-induced hydrolysis and nuclease mapping. Biochimie. 1996;78(2):131–138. doi: 10.1016/0300-9084(96)82645-9. [DOI] [PubMed] [Google Scholar]
  30. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Misra V. K., Draper D. E. Mg(2+) binding to tRNA revisited: the nonlinear Poisson-Boltzmann model. J Mol Biol. 2000 Jun 9;299(3):813–825. doi: 10.1006/jmbi.2000.3769. [DOI] [PubMed] [Google Scholar]
  32. Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ramesh V., Varshney U., Rajbhandary U. L. Intragenic suppression in tRNA: evidence for crosstalk between the D and the T stems. RNA. 1997 Nov;3(11):1220–1232. [PMC free article] [PubMed] [Google Scholar]
  34. Rhim H., Park J., Morrow C. D. Deletions in the tRNA(Lys) primer-binding site of human immunodeficiency virus type 1 identify essential regions for reverse transcription. J Virol. 1991 Sep;65(9):4555–4564. doi: 10.1128/jvi.65.9.4555-4564.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  36. Rubin J. R., Sundaralingam M. Lead ion binding and RNA chain hydrolysis in phenylalanine tRNA. J Biomol Struct Dyn. 1983 Dec;1(3):639–646. doi: 10.1080/07391102.1983.10507471. [DOI] [PubMed] [Google Scholar]
  37. Shelton V. M., Sosnick T. R., Pan T. Applicability of urea in the thermodynamic analysis of secondary and tertiary RNA folding. Biochemistry. 1999 Dec 21;38(51):16831–16839. doi: 10.1021/bi991699s. [DOI] [PubMed] [Google Scholar]
  38. Skripkin E., Isel C., Marquet R., Ehresmann B., Ehresmann C. Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA3(Lys). Nucleic Acids Res. 1996 Feb 1;24(3):509–514. doi: 10.1093/nar/24.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tajmir-Riahi H. A., Ahmad R., Naoui M. Interaction of calf-thymus DNA with trivalent La, Eu, and Tb ions. Metal ion binding, DNA condensation and structural features. J Biomol Struct Dyn. 1993 Apr;10(5):865–877. doi: 10.1080/07391102.1993.10508680. [DOI] [PubMed] [Google Scholar]
  40. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. Nucleotide sequence of the AIDS virus, LAV. Cell. 1985 Jan;40(1):9–17. doi: 10.1016/0092-8674(85)90303-4. [DOI] [PubMed] [Google Scholar]
  41. Walter N. G., Yang N., Burke J. M. Probing non-selective cation binding in the hairpin ribozyme with Tb(III). J Mol Biol. 2000 May 5;298(3):539–555. doi: 10.1006/jmbi.2000.3691. [DOI] [PubMed] [Google Scholar]
  42. Wolfson J. M., Kearns D. R. Europium as a fluorescent probe of transfer RNA structure. Biochemistry. 1975 Apr 8;14(7):1436–1444. doi: 10.1021/bi00678a014. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES