Abstract
A rapid and simple method for determining accessible sites in RNA that is independent of the length of target RNA and does not require RNA labeling is described. In this method, target RNA is allowed to hybridize with sequence-randomized libraries of DNA oligonucleotides linked to a common tag sequence at their 5'-end. Annealed oligonucleotides are extended with reverse transcriptase and the extended products are then amplified by using PCR with a primer corresponding to the tag sequence and a second primer specific to the target RNA sequence. We used the combination of both the lengths of the RT-PCR products and the location of the binding site of the RNA-specific primer to determine which regions of the RNA molecules were RNA extendible sites, that is, sites available for oligonucleotide binding and extension. We then employed this reverse transcription with the random oligonucleotide libraries (RT-ROL) method to determine the accessible sites on four mRNA targets, human activated ras (ha-ras), human intercellular adhesion molecule-1 (ICAM-1), rabbit beta-globin, and human interferon-gamma (IFN-gamma). Our results were concordant with those of other researchers who had used RNase H cleavage or hybridization with arrays of oligonucleotides to identify accessible sites on some of these targets. Further, we found good correlation between sites when we compared the location of extendible sites identified by RT-ROL with hybridization sites of effective antisense oligonucleotides on ICAM-1 mRNA in antisense inhibition studies. Finally, we discuss the relationship between RNA extendible sites and RNA accessibility.
Full Text
The Full Text of this article is available as a PDF (861.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett C. F., Condon T. P., Grimm S., Chan H., Chiang M. Y. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol. 1994 Apr 1;152(7):3530–3540. [PubMed] [Google Scholar]
- Birikh K. R., Berlin Y. A., Soreq H., Eckstein F. Probing accessible sites for ribozymes on human acetylcholinesterase RNA. RNA. 1997 Apr;3(4):429–437. [PMC free article] [PubMed] [Google Scholar]
- Bruice T. W., Lima W. F. Control of complexity constraints on combinatorial screening for preferred oligonucleotide hybridization sites on structured RNA. Biochemistry. 1997 Apr 22;36(16):5004–5019. doi: 10.1021/bi9620767. [DOI] [PubMed] [Google Scholar]
- Campbell T. B., Cech T. R. Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA. RNA. 1995 Aug;1(6):598–609. [PMC free article] [PubMed] [Google Scholar]
- Chiang M. Y., Chan H., Zounes M. A., Freier S. M., Lima W. F., Bennett C. F. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. 1991 Sep 25;266(27):18162–18171. [PubMed] [Google Scholar]
- Craig M. E., Crothers D. M., Doty P. Relaxation kinetics of dimer formation by self complementary oligonucleotides. J Mol Biol. 1971 Dec 14;62(2):383–401. doi: 10.1016/0022-2836(71)90434-7. [DOI] [PubMed] [Google Scholar]
- Crooke S. T., Lemonidis K. M., Neilson L., Griffey R., Lesnik E. A., Monia B. P. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes. Biochem J. 1995 Dec 1;312(Pt 2):599–608. doi: 10.1042/bj3120599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean N. M., McKay R., Condon T. P., Bennett C. F. Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem. 1994 Jun 10;269(23):16416–16424. [PubMed] [Google Scholar]
- Falvey A. K., Weiss G. B., Krueger L. J., Kantor J. A., Anderson W. F. Transcription of single base oligonucleotides by ribonucleic acid-directed deoxyribonucleic acid polymerase. Nucleic Acids Res. 1976 Jan;3(1):79–88. doi: 10.1093/nar/3.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman N. C., Spiegelman S. Distinguishing reverse transcriptase of an RNA tumor virus from other known DNA polymerases. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2203–2206. doi: 10.1073/pnas.68.9.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. G., Eis P. S., Law S. M., Reynaldo L. P., Prudent J. R., Marshall D. J., Allawi H. T., Mast A. L., Dahlberg J. E., Kwiatkowski R. W. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8272–8277. doi: 10.1073/pnas.140225597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho S. P., Bao Y., Lesher T., Malhotra R., Ma L. Y., Fluharty S. J., Sakai R. R. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol. 1998 Jan;16(1):59–63. doi: 10.1038/nbt0198-59. [DOI] [PubMed] [Google Scholar]
- Ho S. P., Britton D. H., Stone B. A., Behrens D. L., Leffet L. M., Hobbs F. W., Miller J. A., Trainor G. L. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res. 1996 May 15;24(10):1901–1907. doi: 10.1093/nar/24.10.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Högenauer G. The stability of a codon transfer RNA complex. Eur J Biochem. 1970 Feb;12(3):527–532. doi: 10.1111/j.1432-1033.1970.tb00882.x. [DOI] [PubMed] [Google Scholar]
- Kafatos F. C., Efstratiadis A., Forget B. G., Weissman S. M. Molecular evolution of human and rabbit beta-globin mRNAs. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5618–5622. doi: 10.1073/pnas.74.12.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser M. W., Lyamicheva N., Ma W., Miller C., Neri B., Fors L., Lyamichev V. I. A comparison of eubacterial and archaeal structure-specific 5'-exonucleases. J Biol Chem. 1999 Jul 23;274(30):21387–21394. doi: 10.1074/jbc.274.30.21387. [DOI] [PubMed] [Google Scholar]
- Kwiatkowski R. W., Lyamichev V., de Arruda M., Neri B. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol Diagn. 1999 Dec;4(4):353–364. doi: 10.1016/s1084-8592(99)80012-5. [DOI] [PubMed] [Google Scholar]
- Lewis J. B., Doty P. Derivation of the secondary structure of 5S RNA from its binding of complementary oligonucleotides. Nature. 1970 Feb 7;225(5232):510–512. doi: 10.1038/225510a0. [DOI] [PubMed] [Google Scholar]
- Lieber A., Strauss M. Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol. 1995 Jan;15(1):540–551. doi: 10.1128/mcb.15.1.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lima W. F., Brown-Driver V., Fox M., Hanecak R., Bruice T. W. Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity. J Biol Chem. 1997 Jan 3;272(1):626–638. [PubMed] [Google Scholar]
- Lima W. F., Crooke S. T. Cleavage of single strand RNA adjacent to RNA-DNA duplex regions by Escherichia coli RNase H1. J Biol Chem. 1997 Oct 31;272(44):27513–27516. doi: 10.1074/jbc.272.44.27513. [DOI] [PubMed] [Google Scholar]
- Lima W. F., Monia B. P., Ecker D. J., Freier S. M. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry. 1992 Dec 8;31(48):12055–12061. doi: 10.1021/bi00163a013. [DOI] [PubMed] [Google Scholar]
- Lokhova I. A., Nevinsky G. A., Gorn V. V., Veniaminova A. G., Repkova M. V., Kavsan V. M., Rudenko N. K., Lavrik O. I. A comparison of the initiating abilities of ribo- and deoxyriboprimers in DNA polymerization catalyzed by AMV reverse transcriptase. FEBS Lett. 1990 Nov 12;274(1-2):156–158. doi: 10.1016/0014-5793(90)81352-o. [DOI] [PubMed] [Google Scholar]
- Lyamichev V. I., Kaiser M. W., Lyamicheva N. E., Vologodskii A. V., Hall J. G., Ma W. P., Allawi H. T., Neri B. P. Experimental and theoretical analysis of the invasive signal amplification reaction. Biochemistry. 2000 Aug 8;39(31):9523–9532. doi: 10.1021/bi0007829. [DOI] [PubMed] [Google Scholar]
- Lyamichev V., Brow M. A., Varvel V. E., Dahlberg J. E. Comparison of the 5' nuclease activities of taq DNA polymerase and its isolated nuclease domain. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6143–6148. doi: 10.1073/pnas.96.11.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyamichev V., Mast A. L., Hall J. G., Prudent J. R., Kaiser M. W., Takova T., Kwiatkowski R. W., Sander T. J., de Arruda M., Arco D. A. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol. 1999 Mar;17(3):292–296. doi: 10.1038/7044. [DOI] [PubMed] [Google Scholar]
- Ma W. P., Kaiser M. W., Lyamicheva N., Schaefer J. J., Allawi H. T., Takova T., Neri B. P., Lyamichev V. I. RNA template-dependent 5' nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases. J Biol Chem. 2000 Aug 11;275(32):24693–24700. doi: 10.1074/jbc.M002268200. [DOI] [PubMed] [Google Scholar]
- Mathews D. H., Burkard M. E., Freier S. M., Wyatt J. R., Turner D. H. Predicting oligonucleotide affinity to nucleic acid targets. RNA. 1999 Nov;5(11):1458–1469. doi: 10.1017/s1355838299991148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matveeva O., Felden B., Audlin S., Gesteland R. F., Atkins J. F. A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res. 1997 Dec 15;25(24):5010–5016. doi: 10.1093/nar/25.24.5010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matveeva O., Felden B., Tsodikov A., Johnston J., Monia B. P., Atkins J. F., Gesteland R. F., Freier S. M. Prediction of antisense oligonucleotide efficacy by in vitro methods. Nat Biotechnol. 1998 Dec;16(13):1374–1375. doi: 10.1038/4362. [DOI] [PubMed] [Google Scholar]
- Milner B. Amobarbital memory testing: some personal reflections. Brain Cogn. 1997 Feb;33(1):14–17. doi: 10.1006/brcg.1997.0881. [DOI] [PubMed] [Google Scholar]
- Milner N., Mir K. U., Southern E. M. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol. 1997 Jun;15(6):537–541. doi: 10.1038/nbt0697-537. [DOI] [PubMed] [Google Scholar]
- Mir K. U., Southern E. M. Determining the influence of structure on hybridization using oligonucleotide arrays. Nat Biotechnol. 1999 Aug;17(8):788–792. doi: 10.1038/11732. [DOI] [PubMed] [Google Scholar]
- Monia B. P., Johnston J. F., Ecker D. J., Zounes M. A., Lima W. F., Freier S. M. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem. 1992 Oct 5;267(28):19954–19962. [PubMed] [Google Scholar]
- Patzel V., Steidl U., Kronenwett R., Haas R., Sczakiel G. A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res. 1999 Nov 15;27(22):4328–4334. doi: 10.1093/nar/27.22.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pörschke D., Eigen M. Co-operative non-enzymic base recognition. 3. Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J Mol Biol. 1971 Dec 14;62(2):361–381. doi: 10.1016/0022-2836(71)90433-5. [DOI] [PubMed] [Google Scholar]
- Reddy E. P. Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene. Science. 1983 Jun 3;220(4601):1061–1063. doi: 10.1126/science.6844927. [DOI] [PubMed] [Google Scholar]
- Reynaldo L. P., Vologodskii A. V., Neri B. P., Lyamichev V. I. The kinetics of oligonucleotide replacements. J Mol Biol. 2000 Mar 24;297(2):511–520. doi: 10.1006/jmbi.2000.3573. [DOI] [PubMed] [Google Scholar]
- Sczakiel G., Homann M., Rittner K. Computer-aided search for effective antisense RNA target sequences of the human immunodeficiency virus type 1. Antisense Res Dev. 1993 Spring;3(1):45–52. doi: 10.1089/ard.1993.3.45. [DOI] [PubMed] [Google Scholar]
- Sohail M., Akhtar S., Southern E. M. The folding of large RNAs studied by hybridization to arrays of complementary oligonucleotides. RNA. 1999 May;5(5):646–655. doi: 10.1017/s1355838299982195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M., Case-Green S. C., Elder J. K., Johnson M., Mir K. U., Wang L., Williams J. C. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 1994 Apr 25;22(8):1368–1373. doi: 10.1093/nar/22.8.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
- Stein C. A. Keeping the biotechnology of antisense in context. Nat Biotechnol. 1999 Mar;17(3):209–209. doi: 10.1038/6909. [DOI] [PubMed] [Google Scholar]
- Stull R. A., Taylor L. A., Szoka F. C., Jr Predicting antisense oligonucleotide inhibitory efficacy: a computational approach using histograms and thermodynamic indices. Nucleic Acids Res. 1992 Jul 11;20(13):3501–3508. doi: 10.1093/nar/20.13.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomassini J. E., Graham D., DeWitt C. M., Lineberger D. W., Rodkey J. A., Colonno R. J. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4907–4911. doi: 10.1073/pnas.86.13.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uhlenbeck O. C., Baller J., Doty P. Complementary oligonucleotide binding to the anticodon loop of fMet-transfer RNA. Nature. 1970 Feb 7;225(5232):508–510. doi: 10.1038/225508a0. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C. Complementary oligonucleotide binding to transfer RNA. J Mol Biol. 1972 Mar 14;65(1):25–41. doi: 10.1016/0022-2836(72)90489-5. [DOI] [PubMed] [Google Scholar]
- Verma I. M. Studies on reverse transcriptase of RNA tumor viruses III. Properties of purified Moloney murine leukemia virus DNA polymerase and associated RNase H. J Virol. 1975 Apr;15(4):843–854. doi: 10.1128/jvi.15.4.843-854.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vickers T. A., Wyatt J. R., Freier S. M. Effects of RNA secondary structure on cellular antisense activity. Nucleic Acids Res. 2000 Mar 15;28(6):1340–1347. doi: 10.1093/nar/28.6.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R. W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994 Nov 24;372(6504):333–335. doi: 10.1038/372333a0. [DOI] [PubMed] [Google Scholar]
- Wagner R. W., Matteucci M. D., Grant D., Huang T., Froehler B. C. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nat Biotechnol. 1996 Jul;14(7):840–844. doi: 10.1038/nbt0796-840. [DOI] [PubMed] [Google Scholar]
- Woolf T. M., Melton D. A., Jennings C. G. Specificity of antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7305–7309. doi: 10.1073/pnas.89.16.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrzesinski J., Legiewicz M., Ciesiołka J. Mapping of accessible sites for oligonucleotide hybridization on hepatitis delta virus ribozymes. Nucleic Acids Res. 2000 Apr 15;28(8):1785–1793. doi: 10.1093/nar/28.8.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yacyshyn B. R., Bowen-Yacyshyn M. B., Jewell L., Tami J. A., Bennett C. F., Kisner D. L., Shanahan W. R., Jr A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease. Gastroenterology. 1998 Jun;114(6):1133–1142. doi: 10.1016/s0016-5085(98)70418-4. [DOI] [PubMed] [Google Scholar]
- Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
