Skip to main content
Immunology logoLink to Immunology
. 1992 Jan;75(1):86–91.

Primary and secondary human in vitro T-cell responses to soluble antigens are mediated by subsets bearing different CD45 isoforms.

M Plebanski 1, M Saunders 1, S S Burtles 1, S Crowe 1, D C Hooper 1
PMCID: PMC1384807  PMID: 1371496

Abstract

A culture system has been developed which consistently supports in vitro proliferative responses to conventional soluble antigens by human CD4+ T cells from non-immunized donors. T cells exposed to an antigen in primary cultures could be restimulated in vitro in an antigen-specific manner to give secondary responses with greater magnitudes and a more rapid onset than the initial reaction. To characterize further the responding T-cell population in primary compared with secondary reactions, T cells were depleted of CD45RA+ or CD45RO+ cells and stimulated with recall and non-recall antigens. It was found that the soluble non-recall antigen keyhole limpet haemocyanin did not stimulate CD45RO+ T cells, yet induced strong proliferative responses from CD45RA+ T cells. Conversely, it was confirmed that human CD45RO+ T cells respond to the recall antigen-purified protein derivative from Mycobacterium tuberculosis. Cell mixing experiments indicated that CD45RO+ T cells are unlikely to have any suppressive effect on the reactivity of CD45RA+ cells to non-recall antigens. These data provide new support for the hypothesis that CD45RA+ represents the naive and CD45RO+ the memory phenotype of human CD4+ T cells.

Full text

PDF
89

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  3. Beverley P. C. Is T-cell memory maintained by crossreactive stimulation? Immunol Today. 1990 Jun;11(6):203–205. doi: 10.1016/0167-5699(90)90083-l. [DOI] [PubMed] [Google Scholar]
  4. Burtles S. S., Taylor R. B., Hooper D. C. Bovine gamma globulin-specific CD4+ T cells are retained by bovine gamma-globulin-tolerant mice. Eur J Immunol. 1990 Jun;20(6):1273–1279. doi: 10.1002/eji.1830200612. [DOI] [PubMed] [Google Scholar]
  5. Dianzani U., Luqman M., Rojo J., Yagi J., Baron J. L., Woods A., Janeway C. A., Jr, Bottomly K. Molecular associations on the T cell surface correlate with immunological memory. Eur J Immunol. 1990 Oct;20(10):2249–2257. doi: 10.1002/eji.1830201014. [DOI] [PubMed] [Google Scholar]
  6. Hensen E. J., Elferink B. G. Primary sensitisation and restimulation of human lymphocytes with soluble antigen in vitro. Nature. 1979 Jan 18;277(5693):223–225. doi: 10.1038/277223a0. [DOI] [PubMed] [Google Scholar]
  7. Hooper D. C., Taylor R. B. Specific helper T cell reactivity against autologous erythrocytes implies that self tolerance need not depend on clonal deletion. Eur J Immunol. 1987 Jun;17(6):797–802. doi: 10.1002/eji.1830170610. [DOI] [PubMed] [Google Scholar]
  8. Hooper D. C., Young J. L., Elson C. J., Taylor R. B. Murine T cells reactive against autologous erythrocytes: evidence for in vitro and in vivo priming with mouse and rat red blood cells. Cell Immunol. 1987 Apr 15;106(1):53–61. doi: 10.1016/0008-8749(87)90149-3. [DOI] [PubMed] [Google Scholar]
  9. Lechler R. I., Lombardi G., Batchelor J. R., Reinsmoen N., Bach F. H. The molecular basis of alloreactivity. Immunol Today. 1990 Mar;11(3):83–88. doi: 10.1016/0167-5699(90)90033-6. [DOI] [PubMed] [Google Scholar]
  10. Lee W. T., Yin X. M., Vitetta E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol. 1990 May 1;144(9):3288–3295. [PubMed] [Google Scholar]
  11. Merkenschlager M., Ikeda H., Wilkinson D., Beverly P. C., Trowsdale J., Fisher A. G., Altmann D. M. Allorecognition of HLA-DR and -DQ transfectants by human CD45RA and CD45R0 CD4 T cells: repertoire analysis and activation requirements. Eur J Immunol. 1991 Jan;21(1):79–88. doi: 10.1002/eji.1830210113. [DOI] [PubMed] [Google Scholar]
  12. Merkenschlager M., Terry L., Edwards R., Beverley P. C. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol. 1988 Nov;18(11):1653–1661. doi: 10.1002/eji.1830181102. [DOI] [PubMed] [Google Scholar]
  13. Morimoto C., Letvin N. L., Boyd A. W., Hagan M., Brown H. M., Kornacki M. M., Schlossman S. F. The isolation and characterization of the human helper inducer T cell subset. J Immunol. 1985 Jun;134(6):3762–3769. [PubMed] [Google Scholar]
  14. Morimoto C., Reinherz E. L., Schlossman S. F. Primary in vitro anti-KLH antibody formation by peripheral blood lymphocytes in man: detection with a radioimmunoassay. J Immunol. 1981 Aug;127(2):514–517. [PubMed] [Google Scholar]
  15. Rodey G. E., Luehrman L. K., Thomas D. W. In vitro primary immunization of human peripheral blood lymphocytes to KLH: evidence for HLA-D region restriction. J Immunol. 1979 Nov;123(5):2250–2254. [PubMed] [Google Scholar]
  16. Rothstein D. M., Yamada A., Schlossman S. F., Morimoto C. Cyclic regulation of CD45 isoform expression in a long term human CD4+CD45RA+ T cell line. J Immunol. 1991 Feb 15;146(4):1175–1183. [PubMed] [Google Scholar]
  17. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  18. Smith S. H., Brown M. H., Rowe D., Callard R. E., Beverley P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed] [Google Scholar]
  19. Tedder T. F., Cooper M. D., Clement L. T. Human lymphocyte differentiation antigens HB-10 and HB-11. II. Differential production of B cell growth and differentiation factors by distinct helper T cell subpopulations. J Immunol. 1985 May;134(5):2989–2994. [PubMed] [Google Scholar]
  20. Thomas M. L. The leukocyte common antigen family. Annu Rev Immunol. 1989;7:339–369. doi: 10.1146/annurev.iy.07.040189.002011. [DOI] [PubMed] [Google Scholar]
  21. Wallace D. L., Beverley P. C. Phenotypic changes associated with activation of CD45RA+ and CD45RO+ T cells. Immunology. 1990 Mar;69(3):460–467. [PMC free article] [PubMed] [Google Scholar]
  22. Wigzell H., Sundqvist K. G., Yoshida T. O. Separation of cells according to surface antigens by the use of antibody-coated columns. Fractionation of cells carrying immunoglobulins and blood group antigen. Scand J Immunol. 1972;1(1):75–87. doi: 10.1111/j.1365-3083.1972.tb03737.x. [DOI] [PubMed] [Google Scholar]
  23. Williams N. A., Hill T. J., Hooper D. C. Murine epidermal antigen-presenting cells in primary and secondary T-cell proliferative responses to a soluble protein antigen in vitro. Immunology. 1990 Nov;71(3):411–416. [PMC free article] [PubMed] [Google Scholar]
  24. Williams N. A., Hill T. J., Hooper D. C. Murine epidermal antigen-presenting cells in primary and secondary T-cell proliferative responses to herpes simplex virus in vitro. Immunology. 1991 Jan;72(1):34–39. [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES