Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1979 Mar;7(3):237–243. doi: 10.1111/j.1365-2125.1979.tb00928.x

Environmental factors affecting antipyrine metabolism in London factory and office workers.

H S Fraser, J C Mucklow, C J Bulpitt, C Kahn, G Mould, C T Dollery
PMCID: PMC1429487  PMID: 427001

Abstract

1 Measurements of antipyrine clearance in saliva have been made in 128 London factory and office workers. 2 Mean antipyrine clearance in 56 Asian immigrants was 40% slower than in 72 White subjects. 3 Although dietary differences existed between the two groups, analysis of their effect independently of race was impossible since all but one of the vegetarians were Asian and the non-vegetarians were nearly all White. 4 In the White subjects, use of the oral contraceptive reduced clearance by 38% in women, while cigarette smoking increase clearance by 38% in men.

Full text

PDF
239

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexanderson B., Evans D. A., Sjöqvist F. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br Med J. 1969 Dec 27;4(5686):764–768. doi: 10.1136/bmj.4.5686.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvares A. P., Anderson K. E., Conney A. H., Kappas A. Interactions between nutritional factors and drug biotransformations in man. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2501–2504. doi: 10.1073/pnas.73.7.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHRISTENSEN L. K., HANSEN J. M., KRISTENSEN M. SULPHAPHENAZOLE-INDUCED HYPOGLYCAEMIC ATTACKS IN TOLBUTAMIDE-TREATED DIABETICS. Lancet. 1963 Dec 21;2(7321):1298–1301. doi: 10.1016/s0140-6736(63)90847-x. [DOI] [PubMed] [Google Scholar]
  4. Christensen L. K., Skovsted L. Inhibition of drug metabolism by chloramphenicol. Lancet. 1969 Dec 27;2(7635):1397–1399. doi: 10.1016/s0140-6736(69)90937-4. [DOI] [PubMed] [Google Scholar]
  5. Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 1967 Sep;19(3):317–366. [PubMed] [Google Scholar]
  6. Fraser H. S., Bulpitt C. J., Kahn C., Mould G., Mucklow J. C., Dollery C. T. Factors affecting antipyrine metabolism in West African villagers. Clin Pharmacol Ther. 1976 Sep;20(3):369–376. doi: 10.1002/cpt1976203369. [DOI] [PubMed] [Google Scholar]
  7. Fraser H. S., Mucklow J. C., Murray S., Davies D. S. Assessment of antipyrine kinetics by measurement in saliva. Br J Clin Pharmacol. 1976 Apr;3(2):321–325. doi: 10.1111/j.1365-2125.1976.tb00610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammer W., Sjöqvist F. Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds. Life Sci. 1967 Sep 1;6(17):1895–1903. doi: 10.1016/0024-3205(67)90218-4. [DOI] [PubMed] [Google Scholar]
  9. Hart P., Farrell G. C., Cooksley W. G., Powell L. W. Enhanced drug metabolism in cigarette smokers. Br Med J. 1976 Jul 17;2(6028):147–149. doi: 10.1136/bmj.2.6028.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jenne H., Nagasawa H., McHugh R., MacDonald F., Wyse E. Decreased theophylline half-life in cigarette smokers. Life Sci. 1975 Jul 15;17(2):195–198. doi: 10.1016/0024-3205(75)90503-2. [DOI] [PubMed] [Google Scholar]
  11. Kolmodin B., Azarnoff D. L., Sjöqvist F. Effect of environmental factors on drug metabolism: decreased plasma half-life of antipyrine in workers exposed to chlorinated hydrocarbon insecticides. Clin Pharmacol Ther. 1969 Sep-Oct;10(5):638–642. doi: 10.1002/cpt1969105638. [DOI] [PubMed] [Google Scholar]
  12. Kutt H., Winters W., McDowell F. H. Depression of prahydroxylation of diphenylhydantoin by antituberculosis chemotherapy. Neurology. 1966 Jun;16(6):594–602. doi: 10.1212/wnl.16.6.594. [DOI] [PubMed] [Google Scholar]
  13. LOESER E. W., Jr Studies on the metabolism of diphenylhydantoin (Dilantin). Neurology. 1961 May;11:424–429. doi: 10.1212/wnl.11.5.424. [DOI] [PubMed] [Google Scholar]
  14. O'Malley K., Stevenson I. H., Crooks J. Impairment of human drug metabolism by oral contraceptive steroids. Clin Pharmacol Ther. 1972 Jul-Aug;13(4):552–557. doi: 10.1002/cpt1972134552. [DOI] [PubMed] [Google Scholar]
  15. O'Malley K., Stevenson I. H., Wood M. Proceedings: Drug metabolizing ability in operating theatre personnel. Br J Anaesth. 1973 Aug;45(8):924–924. [PubMed] [Google Scholar]
  16. Vesell E. S. Genetic and environmental factors affecting drug response in man. Fed Proc. 1972 Jul-Aug;31(4):1253–1269. [PubMed] [Google Scholar]
  17. Vesell E. S., Page J. G. Genetic control of drug levels in man: antipyrine. Science. 1968 Jul 5;161(3836):72–73. doi: 10.1126/science.161.3836.72. [DOI] [PubMed] [Google Scholar]
  18. Vesell E. S., Page J. G. Genetic control of drug levels in man: phenylbutazone. Science. 1968 Mar 29;159(3822):1479–1480. doi: 10.1126/science.159.3822.1479. [DOI] [PubMed] [Google Scholar]
  19. Vestal R. E., Norris A. H., Tobin J. D., Cohen B. H., Shock N. W., Andres R. Antipyrine metabolism in man: influence of age, alcohol, caffeine, and smoking. Clin Pharmacol Ther. 1975 Oct;18(4):425–432. doi: 10.1002/cpt1975184425. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES