Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Apr;11(4):661–676. doi: 10.1105/tpc.11.4.661

Proteins for transport of water and mineral nutrients across the membranes of plant cells.

M J Chrispeels 1, N M Crawford 1, J I Schroeder 1
PMCID: PMC144211  PMID: 10213785

Full Text

The Full Text of this article is available as a PDF (241.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barone L. M., Shih C., Wasserman B. P. Mercury-induced conformational changes and identification of conserved surface loops in plasma membrane aquaporins from higher plants. Topology of PMIP31 from Beta vulgaris L. J Biol Chem. 1997 Dec 5;272(49):30672–30677. doi: 10.1074/jbc.272.49.30672. [DOI] [PubMed] [Google Scholar]
  2. Barrieu F, Chaumont F, Chrispeels MJ. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize . Plant Physiol. 1998 Aug;117(4):1153–1163. doi: 10.1104/pp.117.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bañuelos M. A., Klein R. D., Alexander-Bowman S. J., Rodríguez-Navarro A. A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J. 1995 Jul 3;14(13):3021–3027. doi: 10.1002/j.1460-2075.1995.tb07304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownlee A. G., Arst H. N., Jr Nitrate uptake in Aspergillus nidulans and involvement of the third gene of the nitrate assimilation gene cluster. J Bacteriol. 1983 Sep;155(3):1138–1146. doi: 10.1128/jb.155.3.1138-1146.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bun-Ya M., Nishimura M., Harashima S., Oshima Y. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol. 1991 Jun;11(6):3229–3238. doi: 10.1128/mcb.11.6.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bun-ya M., Shikata K., Nakade S., Yompakdee C., Harashima S., Oshima Y. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet. 1996 Mar;29(4):344–351. [PubMed] [Google Scholar]
  7. Cammack J. N., Schwartz E. A. Channel behavior in a gamma-aminobutyrate transporter. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):723–727. doi: 10.1073/pnas.93.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chrispeels M. J., Maurel C. Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 1994 May;105(1):9–13. doi: 10.1104/pp.105.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daram P., Brunner S., Persson B. L., Amrhein N., Bucher M. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta. 1998 Oct;206(2):225–233. doi: 10.1007/s004250050394. [DOI] [PubMed] [Google Scholar]
  10. Ding L., Zhu J. K. Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol. 1997 Mar;113(3):795–799. doi: 10.1104/pp.113.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Echevarría M., Windhager E. E., Frindt G. Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem. 1996 Oct 11;271(41):25079–25082. doi: 10.1074/jbc.271.41.25079. [DOI] [PubMed] [Google Scholar]
  12. Eide D., Broderius M., Fett J., Guerinot M. L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624–5628. doi: 10.1073/pnas.93.11.5624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995 Jun 15;375(6532):599–603. doi: 10.1038/375599a0. [DOI] [PubMed] [Google Scholar]
  14. Fu H. H., Luan S. AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell. 1998 Jan;10(1):63–73. doi: 10.1105/tpc.10.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gassman W., Rubio F., Schroeder J. I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J. 1996 Nov;10(5):869–852. doi: 10.1046/j.1365-313x.1996.10050869.x. [DOI] [PubMed] [Google Scholar]
  16. Glass A. D., Shaff J. E., Kochian L. V. Studies of the Uptake of Nitrate in Barley : IV. Electrophysiology. Plant Physiol. 1992 Jun;99(2):456–463. doi: 10.1104/pp.99.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harrison M. J., van Buuren M. L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995 Dec 7;378(6557):626–629. doi: 10.1038/378626a0. [DOI] [PubMed] [Google Scholar]
  18. Hirsch R. E., Lewis B. D., Spalding E. P., Sussman M. R. A role for the AKT1 potassium channel in plant nutrition. Science. 1998 May 8;280(5365):918–921. doi: 10.1126/science.280.5365.918. [DOI] [PubMed] [Google Scholar]
  19. Huang N. C., Chiang C. S., Crawford N. M., Tsay Y. F. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell. 1996 Dec;8(12):2183–2191. doi: 10.1105/tpc.8.12.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johansson I., Karlsson M., Shukla V. K., Chrispeels M. J., Larsson C., Kjellbom P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell. 1998 Mar;10(3):451–459. doi: 10.1105/tpc.10.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johansson I., Larsson C., Ek B., Kjellbom P. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell. 1996 Jul;8(7):1181–1191. doi: 10.1105/tpc.8.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johnson K. D., Chrispeels M. J. Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein. Plant Physiol. 1992 Dec;100(4):1787–1795. doi: 10.1104/pp.100.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnson K. D., Herman E. M., Chrispeels M. J. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 1989 Nov;91(3):1006–1013. doi: 10.1104/pp.91.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaldenhoff R., Grote K., Zhu J. J., Zimmermann U. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J. 1998 Apr;14(1):121–128. doi: 10.1046/j.1365-313x.1998.00111.x. [DOI] [PubMed] [Google Scholar]
  25. Kaldenhoff R., Kölling A., Meyers J., Karmann U., Ruppel G., Richter G. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J. 1995 Jan;7(1):87–95. doi: 10.1046/j.1365-313x.1995.07010087.x. [DOI] [PubMed] [Google Scholar]
  26. Kampfenkel K., Kushnir S., Babiychuk E., Inzé D., Van Montagu M. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem. 1995 Nov 24;270(47):28479–28486. doi: 10.1074/jbc.270.47.28479. [DOI] [PubMed] [Google Scholar]
  27. Ketter J. S., Jarai G., Fu Y. H., Marzluf G. A. Nucleotide sequence, messenger RNA stability, and DNA recognition elements of cys-14, the structural gene for sulfate permease II in Neurospora crassa. Biochemistry. 1991 Feb 19;30(7):1780–1787. doi: 10.1021/bi00221a008. [DOI] [PubMed] [Google Scholar]
  28. Kim E. J., Kwak J. M., Uozumi N., Schroeder J. I. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell. 1998 Jan;10(1):51–62. doi: 10.1105/tpc.10.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kochian L. V., Lucas W. J. Potassium transport in corn roots : I. Resolution of kinetics into a saturable and linear component. Plant Physiol. 1982 Dec;70(6):1723–1731. doi: 10.1104/pp.70.6.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kochian L. V., Shaff J. E., Lucas W. J. High affinity k uptake in maize roots: a lack of coupling with h efflux. Plant Physiol. 1989 Nov;91(3):1202–1211. doi: 10.1104/pp.91.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lagarde D., Basset M., Lepetit M., Conejero G., Gaymard F., Astruc S., Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996 Feb;9(2):195–203. doi: 10.1046/j.1365-313x.1996.09020195.x. [DOI] [PubMed] [Google Scholar]
  32. Lagrée V., Froger A., Deschamps S., Hubert J. F., Delamarche C., Bonnec G., Thomas D., Gouranton J., Pellerin I. Switch from an aquaporin to a glycerol channel by two amino acids substitution. J Biol Chem. 1999 Mar 12;274(11):6817–6819. doi: 10.1074/jbc.274.11.6817. [DOI] [PubMed] [Google Scholar]
  33. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM. The dual function of sugar carriers. Transport and sugar sensing . Plant Cell. 1999 Apr;11(4):707–726. doi: 10.1105/tpc.11.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Larsson H. P., Picaud S. A., Werblin F. S., Lecar H. Noise analysis of the glutamate-activated current in photoreceptors. Biophys J. 1996 Feb;70(2):733–742. doi: 10.1016/S0006-3495(96)79613-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lauter F. R., Ninnemann O., Bucher M., Riesmeier J. W., Frommer W. B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8139–8144. doi: 10.1073/pnas.93.15.8139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Leggett J. E., Epstein E. Kinetics of Sulfate Absorption by Barley Roots. Plant Physiol. 1956 May;31(3):222–226. doi: 10.1104/pp.31.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Leggewie G., Willmitzer L., Riesmeier J. W. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell. 1997 Mar;9(3):381–392. doi: 10.1105/tpc.9.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liu C., Muchhal U. S., Uthappa M., Kononowicz A. K., Raghothama K. G. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 1998 Jan;116(1):91–99. doi: 10.1104/pp.116.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Liu H., Trieu A. T., Blaylock L. A., Harrison M. J. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact. 1998 Jan;11(1):14–22. doi: 10.1094/MPMI.1998.11.1.14. [DOI] [PubMed] [Google Scholar]
  40. Liu J., Zhu J. K. A calcium sensor homolog required for plant salt tolerance. Science. 1998 Jun 19;280(5371):1943–1945. doi: 10.1126/science.280.5371.1943. [DOI] [PubMed] [Google Scholar]
  41. Liu J., Zhu J. K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14960–14964. doi: 10.1073/pnas.94.26.14960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Maathuis F. J., Ichida A. M., Sanders D., Schroeder J. I. Roles of higher plant K+ channels. Plant Physiol. 1997 Aug;114(4):1141–1149. doi: 10.1104/pp.114.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Maathuis F. J., Sanders D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9272–9276. doi: 10.1073/pnas.91.20.9272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Maathuis FJM., Verlin D., Smith F. A., Sanders D., Fernandez J. A., Walker N. A. The Physiological Relevance of Na+-Coupled K+-Transport. Plant Physiol. 1996 Dec;112(4):1609–1616. doi: 10.1104/pp.112.4.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Maggio A., Joly R. J. Effects of Mercuric Chloride on the Hydraulic Conductivity of Tomato Root Systems (Evidence for a Channel-Mediated Water Pathway). Plant Physiol. 1995 Sep;109(1):331–335. doi: 10.1104/pp.109.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Marty F. Plant vacuoles . Plant Cell. 1999 Apr;11(4):587–600. doi: 10.1105/tpc.11.4.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Maurel C., Tacnet F., Güclü J., Guern J., Ripoche P. Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7103–7108. doi: 10.1073/pnas.94.13.7103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Maurel Christophe. AQUAPORINS AND WATER PERMEABILITY OF PLANT MEMBRANES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):399–429. doi: 10.1146/annurev.arplant.48.1.399. [DOI] [PubMed] [Google Scholar]
  49. McClure P. R., Kochian L. V., Spanswick R. M., Shaff J. E. Evidence for cotransport of nitrate and protons in maize roots : I. Effects of nitrate on the membrane potential. Plant Physiol. 1990 May;93(1):281–289. doi: 10.1104/pp.93.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Meharg A. A., Blatt M. R. NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J Membr Biol. 1995 May;145(1):49–66. doi: 10.1007/BF00233306. [DOI] [PubMed] [Google Scholar]
  51. Mitsukawa N., Okumura S., Shirano Y., Sato S., Kato T., Harashima S., Shibata D. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7098–7102. doi: 10.1073/pnas.94.13.7098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Muchhal U. S., Pardo J. M., Raghothama K. G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10519–10523. doi: 10.1073/pnas.93.19.10519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Newman I. A., Kochian L. V., Grusak M. A., Lucas W. J. Fluxes of h and k in corn roots : characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol. 1987 Aug;84(4):1177–1184. doi: 10.1104/pp.84.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Niemietz C. M., Tyerman S. D. Characterization of Water Channels in Wheat Root Membrane Vesicles. Plant Physiol. 1997 Oct;115(2):561–567. doi: 10.1104/pp.115.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ninnemann O., Jauniaux J. C., Frommer W. B. Identification of a high affinity NH4+ transporter from plants. EMBO J. 1994 Aug 1;13(15):3464–3471. doi: 10.1002/j.1460-2075.1994.tb06652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Pardo J. M., Reddy M. P., Yang S., Maggio A., Huh G. H., Matsumoto T., Coca M. A., Paino-D'Urzo M., Koiwa H., Yun D. J. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9681–9686. doi: 10.1073/pnas.95.16.9681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Pérez M. D., González C., Avila J., Brito N., Siverio J. M. The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem J. 1997 Jan 15;321(Pt 2):397–403. doi: 10.1042/bj3210397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Quesada A., Galván A., Fernández E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J. 1994 Mar;5(3):407–419. doi: 10.1111/j.1365-313x.1994.00407.x. [DOI] [PubMed] [Google Scholar]
  59. Quintero F. J., Blatt M. R. A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett. 1997 Sep 29;415(2):206–211. doi: 10.1016/s0014-5793(97)01125-3. [DOI] [PubMed] [Google Scholar]
  60. Rodriguez-Navarro A., Blatt M. R., Slayman C. L. A potassium-proton symport in Neurospora crassa. J Gen Physiol. 1986 May;87(5):649–674. doi: 10.1085/jgp.87.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rubio F., Gassmann W., Schroeder J. I. Response: high-affinity potassium uptake in plants. Science. 1996 Aug 16;273(5277):978–979. doi: 10.1126/science.273.5277.978. [DOI] [PubMed] [Google Scholar]
  62. Rubio F., Gassmann W., Schroeder J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995 Dec 8;270(5242):1660–1663. doi: 10.1126/science.270.5242.1660. [DOI] [PubMed] [Google Scholar]
  63. Santa-María G. E., Rubio F., Dubcovsky J., Rodríguez-Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell. 1997 Dec;9(12):2281–2289. doi: 10.1105/tpc.9.12.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]
  65. Schachtman DP, Reid RJ, Ayling SM. Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol. 1998 Feb 1;116(2):447–453. doi: 10.1104/pp.116.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Schleyer M., Bakker E. P. Nucleotide sequence and 3'-end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol. 1993 Nov;175(21):6925–6931. doi: 10.1128/jb.175.21.6925-6931.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Schroeder J. I., Ward J. M., Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct. 1994;23:441–471. doi: 10.1146/annurev.bb.23.060194.002301. [DOI] [PubMed] [Google Scholar]
  68. Schäffner A. R. Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta. 1998 Feb;204(2):131–139. doi: 10.1007/s004250050239. [DOI] [PubMed] [Google Scholar]
  69. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  70. Smith F. W., Ealing P. M., Dong B., Delhaize E. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 1997 Jan;11(1):83–92. doi: 10.1046/j.1365-313x.1997.11010083.x. [DOI] [PubMed] [Google Scholar]
  71. Smith F. W., Ealing P. M., Hawkesford M. J., Clarkson D. T. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9373–9377. doi: 10.1073/pnas.92.20.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Smith F. W., Hawkesford M. J., Ealing P. M., Clarkson D. T., Vanden Berg P. J., Belcher A. R., Warrilow A. G. Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J. 1997 Oct;12(4):875–884. doi: 10.1046/j.1365-313x.1997.12040875.x. [DOI] [PubMed] [Google Scholar]
  73. Smith F. W., Hawkesford M. J., Prosser I. M., Clarkson D. T. Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet. 1995 Jun 25;247(6):709–715. doi: 10.1007/BF00290402. [DOI] [PubMed] [Google Scholar]
  74. Su A., Mager S., Mayo S. L., Lester H. A. A multi-substrate single-file model for ion-coupled transporters. Biophys J. 1996 Feb;70(2):762–777. doi: 10.1016/S0006-3495(96)79616-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Sze H, Li X, Palmgren MG. Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis . Plant Cell. 1999 Apr;11(4):677–690. doi: 10.1105/tpc.11.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Takahashi H., Sasakura N., Noji M., Saito K. Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett. 1996 Aug 26;392(2):95–99. doi: 10.1016/0014-5793(96)00787-9. [DOI] [PubMed] [Google Scholar]
  77. Takahashi H., Yamazaki M., Sasakura N., Watanabe A., Leustek T., Engler J. A., Engler G., Van Montagu M., Saito K. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11102–11107. doi: 10.1073/pnas.94.20.11102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Tanner W., Caspari T. MEMBRANE TRANSPORT CARRIERS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):595–626. doi: 10.1146/annurev.arplant.47.1.595. [DOI] [PubMed] [Google Scholar]
  79. Touraine B., Glass A. D. NO3- and ClO3- fluxes in the chl1-5 mutant of Arabidopsis thaliana. Does the CHL1-5 gene encode a low-affinity NO3- transporter? Plant Physiol. 1997 May;114(1):137–144. doi: 10.1104/pp.114.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Tsay Y. F., Schroeder J. I., Feldmann K. A., Crawford N. M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 1993 Mar 12;72(5):705–713. doi: 10.1016/0092-8674(93)90399-b. [DOI] [PubMed] [Google Scholar]
  81. Ullrich C. I., Novacky A. J. Extra- and Intracellular pH and Membrane Potential Changes Induced by K, Cl, H(2)PO(4), and NO(3) Uptake and Fusicoccin in Root Hairs of Limnobium stoloniferum. Plant Physiol. 1990 Dec;94(4):1561–1567. doi: 10.1104/pp.94.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Unkles S. E., Hawker K. L., Grieve C., Campbell E. I., Montague P., Kinghorn J. R. crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):204–208. doi: 10.1073/pnas.88.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Versaw W. K. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene. 1995 Feb 3;153(1):135–139. doi: 10.1016/0378-1119(94)00814-9. [DOI] [PubMed] [Google Scholar]
  84. Wang R., Liu D., Crawford N. M. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15134–15139. doi: 10.1073/pnas.95.25.15134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Wang TB, Gassmann W, Rubio F, Schroeder JI, Glass AD. Rapid Up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium . Plant Physiol. 1998 Oct;118(2):651–659. doi: 10.1104/pp.118.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Weig A., Deswarte C., Chrispeels M. J. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 1997 Aug;114(4):1347–1357. doi: 10.1104/pp.114.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Wu S. J., Ding L., Zhu J. K. SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. Plant Cell. 1996 Apr;8(4):617–627. doi: 10.1105/tpc.8.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES