Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):411–422. doi: 10.1093/genetics/156.1.411

Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model.

N Yi 1, S Xu 1
PMCID: PMC1461251  PMID: 10978304

Abstract

Variance component analysis of quantitative trait loci (QTL) is an important strategy of genetic mapping for complex traits in humans. The method is robust because it can handle an arbitrary number of alleles with arbitrary modes of gene actions. The variance component method is usually implemented using the proportion of alleles with identity-by-descent (IBD) shared by relatives. As a result, information about marker linkage phases in the parents is not required. The method has been studied extensively under either the maximum-likelihood framework or the sib-pair regression paradigm. However, virtually all investigations are limited to normally distributed traits under a single QTL model. In this study, we develop a Bayes method to map multiple QTL. We also extend the Bayesian mapping procedure to identify QTL responsible for the variation of complex binary diseases in humans under a threshold model. The method can also treat the number of QTL as a parameter and infer its posterior distribution. We use the reversible jump Markov chain Monte Carlo method to infer the posterior distributions of parameters of interest. The Bayesian mapping procedure ends with an estimation of the joint posterior distribution of the number of QTL and the locations and variances of the identified QTL. Utilities of the method are demonstrated using a simulated population consisting of multiple full-sib families.

Full Text

The Full Text of this article is available as a PDF (309.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almasy L., Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998 May;62(5):1198–1211. doi: 10.1086/301844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos C. I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet. 1994 Mar;54(3):535–543. [PMC free article] [PubMed] [Google Scholar]
  3. Duggirala R., Williams J. T., Williams-Blangero S., Blangero J. A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol. 1997;14(6):987–992. doi: 10.1002/(SICI)1098-2272(1997)14:6<987::AID-GEPI71>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  4. Fulker D. W., Cardon L. R. A sib-pair approach to interval mapping of quantitative trait loci. Am J Hum Genet. 1994 Jun;54(6):1092–1103. [PMC free article] [PubMed] [Google Scholar]
  5. Fulker D. W., Cherny S. S., Cardon L. R. Multipoint interval mapping of quantitative trait loci, using sib pairs. Am J Hum Genet. 1995 May;56(5):1224–1233. [PMC free article] [PubMed] [Google Scholar]
  6. Gessler D. D., Xu S. Using the expectation or the distribution of the identity by descent for mapping quantitative trait loci under the random model. Am J Hum Genet. 1996 Dec;59(6):1382–1390. [PMC free article] [PubMed] [Google Scholar]
  7. Hackett C. A., Weller J. I. Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics. 1995 Dec;51(4):1252–1263. [PubMed] [Google Scholar]
  8. Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mendell N. R., Elston R. C. Multifactorial qualitative traits: genetic analysis and prediction of recurrence risks. Biometrics. 1974 Mar;30(1):41–57. [PubMed] [Google Scholar]
  12. Rao S., Xu S. Mapping quantitative trait loci for ordered categorical traits in four-way crosses. Heredity (Edinb) 1998 Aug;81(Pt 2):214–224. doi: 10.1046/j.1365-2540.1998.00378.x. [DOI] [PubMed] [Google Scholar]
  13. Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schork N. J. Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am J Hum Genet. 1993 Dec;53(6):1306–1319. [PMC free article] [PubMed] [Google Scholar]
  15. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Xu S., Atchley W. R. A random model approach to interval mapping of quantitative trait loci. Genetics. 1995 Nov;141(3):1189–1197. doi: 10.1093/genetics/141.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Xu S., Atchley W. R. Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics. 1996 Jul;143(3):1417–1424. doi: 10.1093/genetics/143.3.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xu S., Gessler D. D. Multipoint genetic mapping of quantitative trait loci using a variable number of sibs per family. Genet Res. 1998 Feb;71(1):73–83. doi: 10.1017/s0016672398003115. [DOI] [PubMed] [Google Scholar]
  20. Yi N., Xu S. A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations. Genetics. 1999 Oct;153(2):1029–1040. doi: 10.1093/genetics/153.2.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yi N., Xu S. Mapping quantitative trait loci for complex binary traits in outbred populations. Heredity (Edinb) 1999 Jun;82(Pt 6):668–676. doi: 10.1046/j.1365-2540.1999.00529.x. [DOI] [PubMed] [Google Scholar]
  22. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES