Skip to main content
Genetics logoLink to Genetics
. 2000 Oct;156(2):879–891. doi: 10.1093/genetics/156.2.879

Consequences of recombination on traditional phylogenetic analysis.

M H Schierup 1, J Hein 1
PMCID: PMC1461297  PMID: 11014833

Abstract

We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mtDNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination. With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may not be immediately detectable in a data set. The phylogenies when recombination is present superficially resemble phylogenies for sequences from an exponentially growing population. However, exponential growth has a different effect on statistics such as Tajima's D. Furthermore, ignoring recombination leads to a large overestimation of the substitution rate heterogeneity and the loss of the molecular clock. These results are discussed in relation to viral and mtDNA data sets.

Full Text

The Full Text of this article is available as a PDF (249.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arctander P., Kat P. W., Aman R. A., Siegismund H. R. Extreme genetic differences among populations of Gazella granti, Grant's gazelle in Kenya. Heredity (Edinb) 1996 May;76(Pt 5):465–475. doi: 10.1038/hdy.1996.69. [DOI] [PubMed] [Google Scholar]
  2. Awadalla P., Eyre-Walker A., Smith J. M. Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science. 1999 Dec 24;286(5449):2524–2525. doi: 10.1126/science.286.5449.2524. [DOI] [PubMed] [Google Scholar]
  3. Ayala F. J. The myth of Eve: molecular biology and human origins. Science. 1995 Dec 22;270(5244):1930–1936. doi: 10.1126/science.270.5244.1930. [DOI] [PubMed] [Google Scholar]
  4. Beerli P., Felsenstein J. Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics. 1999 Jun;152(2):763–773. doi: 10.1093/genetics/152.2.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Begun D. J., Aquadro C. F. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. doi: 10.1093/genetics/140.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark A. G. Neutral behavior of shared polymorphism. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7730–7734. doi: 10.1073/pnas.94.15.7730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felsenstein J. Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. Genet Res. 1992 Apr;59(2):139–147. doi: 10.1017/s0016672300030354. [DOI] [PubMed] [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  9. Griffiths R. C., Marjoram P. Ancestral inference from samples of DNA sequences with recombination. J Comput Biol. 1996 Winter;3(4):479–502. doi: 10.1089/cmb.1996.3.479. [DOI] [PubMed] [Google Scholar]
  10. Griffiths R. C. The time to the ancestor along sequences with recombination. Theor Popul Biol. 1999 Apr;55(2):137–144. doi: 10.1006/tpbi.1998.1390. [DOI] [PubMed] [Google Scholar]
  11. Hey J., Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holmes E. C., Worobey M., Rambaut A. Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol. 1999 Mar;16(3):405–409. doi: 10.1093/oxfordjournals.molbev.a026121. [DOI] [PubMed] [Google Scholar]
  13. Kelsey C. R., Crandall K. A., Voevodin A. F. Different models, different trees: the geographic origin of PTLV-I. Mol Phylogenet Evol. 1999 Nov;13(2):336–347. doi: 10.1006/mpev.1999.0663. [DOI] [PubMed] [Google Scholar]
  14. Kuhner M. K., Yamato J., Felsenstein J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics. 1995 Aug;140(4):1421–1430. doi: 10.1093/genetics/140.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuhner M. K., Yamato J., Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics. 1998 May;149(1):429–434. doi: 10.1093/genetics/149.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leitner T., Albert J. The molecular clock of HIV-1 unveiled through analysis of a known transmission history. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10752–10757. doi: 10.1073/pnas.96.19.10752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. May G., Shaw F., Badrane H., Vekemans X. The signature of balancing selection: fungal mating compatibility gene evolution. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9172–9177. doi: 10.1073/pnas.96.16.9172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miyashita N., Langley C. H. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics. 1988 Sep;120(1):199–212. doi: 10.1093/genetics/120.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Notohara M. The coalescent and the genealogical process in geographically structured population. J Math Biol. 1990;29(1):59–75. doi: 10.1007/BF00173909. [DOI] [PubMed] [Google Scholar]
  20. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci. 1994 Feb;10(1):41–48. doi: 10.1093/bioinformatics/10.1.41. [DOI] [PubMed] [Google Scholar]
  21. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. Recombination in HIV-1. Nature. 1995 Mar 9;374(6518):124–126. doi: 10.1038/374124b0. [DOI] [PubMed] [Google Scholar]
  22. Santti J., Hyypiä T., Kinnunen L., Salminen M. Evidence of recombination among enteroviruses. J Virol. 1999 Oct;73(10):8741–8749. doi: 10.1128/jvi.73.10.8741-8749.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schierup M. H., Vekemans X., Christiansen F. B. Allelic genealogies in sporophytic self-incompatibility systems in plants. Genetics. 1998 Nov;150(3):1187–1198. doi: 10.1093/genetics/150.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Uyenoyama M. K. Genealogical structure among alleles regulating self-incompatibility in natural populations of flowering plants. Genetics. 1997 Nov;147(3):1389–1400. doi: 10.1093/genetics/147.3.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]
  28. Wiuf C., Hein J. On the number of ancestors to a DNA sequence. Genetics. 1997 Nov;147(3):1459–1468. doi: 10.1093/genetics/147.3.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wiuf C., Hein J. Recombination as a point process along sequences. Theor Popul Biol. 1999 Jun;55(3):248–259. doi: 10.1006/tpbi.1998.1403. [DOI] [PubMed] [Google Scholar]
  30. Wiuf C., Hein J. The coalescent with gene conversion. Genetics. 2000 May;155(1):451–462. doi: 10.1093/genetics/155.1.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang Z., Kumar S. Approximate methods for estimating the pattern of nucleotide substitution and the variation of substitution rates among sites. Mol Biol Evol. 1996 May;13(5):650–659. doi: 10.1093/oxfordjournals.molbev.a025625. [DOI] [PubMed] [Google Scholar]
  32. Zhu T., Korber B. T., Nahmias A. J., Hooper E., Sharp P. M., Ho D. D. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature. 1998 Feb 5;391(6667):594–597. doi: 10.1038/35400. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES