Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):699–716. doi: 10.1093/genetics/157.2.699

Complex organization of promoter and enhancer elements regulate the tissue- and developmental stage-specific expression of the Drosophila melanogaster Gld gene.

B L Keplinger 1, X Guo 1, J Quine 1, Y Feng 1, D R Cavener 1
PMCID: PMC1461511  PMID: 11156990

Abstract

The Drosophila melanogaster Gld gene has multiple and diverse developmental and physiological functions. We report herein that interactions among proximal promoter elements and a cluster of intronically located enhancers and silencers specify the complex regulation of Gld that underlies its diverse functions. Gld expression in nonreproductive tissues is largely determined by proximal promoter elements with the exception of the embryonic labium where Gld is activated by an enhancer within the first intron. A nuclear protein, GPAL, has been identified that binds the Gpal elements in the proximal promoter region. Regulation of Gld in the reproductive organs is particularly complex, involving interactions among the Gpal proximal promoter elements, a unique TATA box, three distinct enhancer types, and one or more silencer elements. The three somatic reproductive organ enhancers each activate expression in male and female pairs of reproductive organs. One of these pairs, the male ejaculatory duct and female oviduct, are known to be developmentally homologous. We report evidence that the other two pairs of organs are developmentally homologous as well. A comprehensive model to explain the full developmental regulation of Gld and its evolution is presented.

Full Text

The Full Text of this article is available as a PDF (532.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belote J. M., Baker B. S. Sex determination in Drosophila melanogaster: analysis of transformer-2, a sex-transforming locus. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1568–1572. doi: 10.1073/pnas.79.5.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  3. Carey M., Lin Y. S., Green M. R., Ptashne M. A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature. 1990 May 24;345(6273):361–364. doi: 10.1038/345361a0. [DOI] [PubMed] [Google Scholar]
  4. Cavener D. R. Coevolution of the glucose dehydrogenase gene and the ejaculatory duct in the genus Drosophila. Mol Biol Evol. 1985 Mar;2(2):141–149. doi: 10.1093/oxfordjournals.molbev.a040344. [DOI] [PubMed] [Google Scholar]
  5. Cavener D. R., MacIntyre R. J. Biphasic expression and function of glucose dehydrogenase in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6286–6288. doi: 10.1073/pnas.80.20.6286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cavener D., Corbett G., Cox D., Whetten R. Isolation of the eclosion gene cluster and the developmental expression of the Gld gene in Drosophila melanogaster. EMBO J. 1986 Nov;5(11):2939–2948. doi: 10.1002/j.1460-2075.1986.tb04590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen E. H., Baker B. S. Compartmental organization of the Drosophila genital imaginal discs. Development. 1997 Jan;124(1):205–218. doi: 10.1242/dev.124.1.205. [DOI] [PubMed] [Google Scholar]
  8. Cherbas L., Schulz R. A., Koehler M. M., Savakis C., Cherbas P. Structure of the Eip28/29 gene, an ecdysone-inducible gene from Drosophila. J Mol Biol. 1986 Jun 20;189(4):617–631. doi: 10.1016/0022-2836(86)90492-4. [DOI] [PubMed] [Google Scholar]
  9. Cox-Foster D. L., Schonbaum C. P., Murtha M. T., Cavener D. R. Developmental expression of the glucose dehydrogenase gene in Drosophila melanogaster. Genetics. 1990 Apr;124(4):873–880. doi: 10.1093/genetics/124.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Epper F., Nöthiger R. Genetic and developmental evidence for a repressed genital primordium in Drosophila melanogaster. Dev Biol. 1982 Nov;94(1):163–175. doi: 10.1016/0012-1606(82)90079-3. [DOI] [PubMed] [Google Scholar]
  11. Fang X. M., Brennan M. D. Multiple cis-acting sequences contribute to evolved regulatory variation for Drosophila Adh genes. Genetics. 1992 Jun;131(2):333–343. doi: 10.1093/genetics/131.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fang X. M., Wu C. Y., Brennan M. D. Complexity in evolved regulatory variation for alcohol dehydrogenase genes in Hawaiian Drosophila. J Mol Evol. 1991 Mar;32(3):220–226. doi: 10.1007/BF02342744. [DOI] [PubMed] [Google Scholar]
  13. Feng Y., Schiff N. M., Cavener D. R. Organ-specific patterns of gene expression in the reproductive tract of Drosophila are regulated by the sex-determination genes. Dev Biol. 1991 Aug;146(2):451–460. doi: 10.1016/0012-1606(91)90246-y. [DOI] [PubMed] [Google Scholar]
  14. Giniger E., Ptashne M. Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Natl Acad Sci U S A. 1988 Jan;85(2):382–386. doi: 10.1073/pnas.85.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glaser R. L., Wolfner M. F., Lis J. T. Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 1986 Apr;5(4):747–754. doi: 10.1002/j.1460-2075.1986.tb04277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gunaratne P., Ross J. L., Zhang Q., Organ E. L., Cavener D. R. An evolutionarily conserved palindrome in the Drosophila Gld promoter directs tissue-specific expression. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2738–2742. doi: 10.1073/pnas.91.7.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gustin K. E., Burk R. D. A rapid method for generating linker scanning mutants utilizing PCR. Biotechniques. 1993 Jan;14(1):22–24. [PubMed] [Google Scholar]
  18. Janson L., Pettersson U. Cooperative interactions between transcription factors Sp1 and OTF-1. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4732–4736. doi: 10.1073/pnas.87.12.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jiang J., Kosman D., Ip Y. T., Levine M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 1991 Oct;5(10):1881–1891. doi: 10.1101/gad.5.10.1881. [DOI] [PubMed] [Google Scholar]
  20. Jiang J., Levine M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell. 1993 Mar 12;72(5):741–752. doi: 10.1016/0092-8674(93)90402-c. [DOI] [PubMed] [Google Scholar]
  21. Karotam J., Oakeshott J. G. Regulatory aspects of esterase 6 activity variation in sibling Drosophila species. Heredity (Edinb) 1993 Jul;71(Pt 1):41–50. doi: 10.1038/hdy.1993.105. [DOI] [PubMed] [Google Scholar]
  22. Keplinger B. L., Rabetoy A. L., Cavener D. R. A somatic reproductive organ enhancer complex activates expression in both the developing and the mature Drosophila reproductive tract. Dev Biol. 1996 Nov 25;180(1):311–323. doi: 10.1006/dbio.1996.0303. [DOI] [PubMed] [Google Scholar]
  23. Krasney P. A., Carr C., Cavener D. R. Evolution of the glucose dehydrogenase gene in Drosophila. Mol Biol Evol. 1990 Mar;7(2):155–177. doi: 10.1093/oxfordjournals.molbev.a040592. [DOI] [PubMed] [Google Scholar]
  24. Li X., Noll M. Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in the Drosophila embryo. EMBO J. 1994 Jan 15;13(2):400–406. doi: 10.1002/j.1460-2075.1994.tb06274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lin Y. S., Carey M., Ptashne M., Green M. R. How different eukaryotic transcriptional activators can cooperate promiscuously. Nature. 1990 May 24;345(6273):359–361. doi: 10.1038/345359a0. [DOI] [PubMed] [Google Scholar]
  26. Littlefield C. L., Bryant P. J. Prospective fates and regulative capacities of fragments of the female genital disc of Drosophila melanogaster. Dev Biol. 1979 May;70(1):127–148. doi: 10.1016/0012-1606(79)90012-5. [DOI] [PubMed] [Google Scholar]
  27. Liu Y., Li H., Tanaka K., Tsumaki N., Yamada Y. Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene. J Biol Chem. 2000 Apr 28;275(17):12712–12718. doi: 10.1074/jbc.275.17.12712. [DOI] [PubMed] [Google Scholar]
  28. Lovallo N., Cox-Foster D. L. Alteration in FAD-glucose dehydrogenase activity and hemocyte behavior contribute to initial disruption of Manduca sexta immune response to Cotesia congregata parasitoids. J Insect Physiol. 1999 Dec;45(12):1037–1048. doi: 10.1016/s0022-1910(99)00086-4. [DOI] [PubMed] [Google Scholar]
  29. Mannervik M., Nibu Y., Zhang H., Levine M. Transcriptional coregulators in development. Science. 1999 Apr 23;284(5414):606–609. doi: 10.1126/science.284.5414.606. [DOI] [PubMed] [Google Scholar]
  30. Murtha M. T., Cavener D. R. Ecdysteroid regulation of glucose dehydrogenase and alcohol dehydrogenase gene expression in Drosophila melanogaster. Dev Biol. 1989 Sep;135(1):66–73. doi: 10.1016/0012-1606(89)90158-9. [DOI] [PubMed] [Google Scholar]
  31. Picard V., Ersdal-Badju E., Lu A., Bock S. C. A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 1994 Jul 11;22(13):2587–2591. doi: 10.1093/nar/22.13.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Quine J. A., Gunaratne P., Organ E. L., Cavener B. A., Cavener D. R. Tissue-specific regulatory elements of the Drosophila Gld gene. Mech Dev. 1993 Jul;42(1-2):3–13. doi: 10.1016/0925-4773(93)90094-e. [DOI] [PubMed] [Google Scholar]
  33. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ross J. L., Fong P. P., Cavener D. R. Correlated evolution of the cis-acting regulatory elements and developmental expression of the Drosophila Gld gene in seven species from the subgroup melanogaster. Dev Genet. 1994;15(1):38–50. doi: 10.1002/dvg.1020150106. [DOI] [PubMed] [Google Scholar]
  35. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  36. Schiff N. M., Feng Y., Quine J. A., Krasney P. A., Cavener D. R. Evolution of the expression of the Gld gene in the reproductive tract of Drosophila. Mol Biol Evol. 1992 Nov;9(6):1029–1049. doi: 10.1093/oxfordjournals.molbev.a040777. [DOI] [PubMed] [Google Scholar]
  37. Sergeev P. V., Panin V. M., Pavlova G. V., Kopantseva M. R., Shostak N. G., Bashkirov V. N., Georgiev G. P., Korochkin L. I. The expression of esterase S gene of Drosophila virilis in Drosophila melanogaster. FEBS Lett. 1995 Feb 27;360(2):194–196. doi: 10.1016/0014-5793(95)00102-f. [DOI] [PubMed] [Google Scholar]
  38. Struhl G., Struhl K., Macdonald P. M. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell. 1989 Jun 30;57(7):1259–1273. doi: 10.1016/0092-8674(89)90062-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES