Skip to main content
Genetics logoLink to Genetics
. 2001 Mar;157(3):1257–1265. doi: 10.1093/genetics/157.3.1257

Whole-genome effects of ethyl methanesulfonate-induced mutation on nine quantitative traits in outbred Drosophila melanogaster.

H P Yang 1, A Y Tanikawa 1, W A Van Voorhies 1, J C Silva 1, A S Kondrashov 1
PMCID: PMC1461548  PMID: 11238409

Abstract

We induced mutations in Drosophila melanogaster males by treating them with 21.2 mm ethyl methanesulfonate (EMS). Nine quantitative traits (developmental time, viability, fecundity, longevity, metabolic rate, motility, body weight, and abdominal and sternopleural bristle numbers) were measured in outbred heterozygous F3 (viability) or F2 (all other traits) offspring from the treated males. The mean values of the first four traits, which are all directly related to the life history, were substantially affected by EMS mutagenesis: the developmental time increased while viability, fecundity, and longevity declined. In contrast, the mean values of the other five traits were not significantly affected. Rates of recessive X-linked lethals and of recessive mutations at several loci affecting eye color imply that our EMS treatment was equivalent to approximately 100 generations of spontaneous mutation. If so, our data imply that one generation of spontaneous mutation increases the developmental time by 0.09% at 20 degrees and by 0.04% at 25 degrees, and reduces viability under harsh conditions, fecundity, and longevity by 1.35, 0.21, and 0.08%, respectively. Comparison of flies with none, one, and two grandfathers (or greatgrandfathers, in the case of viability) treated with EMS did not reveal any significant epistasis among the induced mutations.

Full Text

The Full Text of this article is available as a PDF (214.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H., Charlesworth B. Why sex and recombination? Science. 1998 Sep 25;281(5385):1986–1990. [PubMed] [Google Scholar]
  2. Davies E. K., Peters A. D., Keightley P. D. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science. 1999 Sep 10;285(5434):1748–1751. doi: 10.1126/science.285.5434.1748. [DOI] [PubMed] [Google Scholar]
  3. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fry J. D., Keightley P. D., Heinsohn S. L., Nuzhdin S. V. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574–579. doi: 10.1073/pnas.96.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. García-Dorado A., López-Fanjul C., Caballero A. Properties of spontaneous mutations affecting quantitative traits. Genet Res. 1999 Dec;74(3):341–350. doi: 10.1017/s0016672399004206. [DOI] [PubMed] [Google Scholar]
  6. Houle D. Comparing evolvability and variability of quantitative traits. Genetics. 1992 Jan;130(1):195–204. doi: 10.1093/genetics/130.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keightley P. D., Caballero A., García-Dorado A. Population genetics: surviving under mutation pressure. Curr Biol. 1998 Mar 26;8(7):R235–R237. doi: 10.1016/s0960-9822(98)70148-4. [DOI] [PubMed] [Google Scholar]
  9. Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keightley P. D., Ohnishi O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 1998 Feb;148(2):753–766. doi: 10.1093/genetics/148.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kondrashov A. S., Houle D. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc Biol Sci. 1994 Dec 22;258(1353):221–227. doi: 10.1098/rspb.1994.0166. [DOI] [PubMed] [Google Scholar]
  13. Kondrashov A. S. Measuring spontaneous deleterious mutation process. Genetica. 1998;102-103(1-6):183–197. [PubMed] [Google Scholar]
  14. Mitchell J. A. Fitness effects of EMS-induced mutations on the X chromosome of Drosophila melanogaster. I. Viability effects and heterozygous fitness effects. Genetics. 1977 Dec;87(4):763–774. doi: 10.1093/genetics/87.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mukai T. Viability mutations induced by ethyl methanesulfonate in Drosophila melanogaster. Genetics. 1970 Jun;65(2):335–348. doi: 10.1093/genetics/65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pastink A., Heemskerk E., Nivard M. J., van Vliet C. J., Vogel E. W. Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet. 1991 Oct;229(2):213–218. doi: 10.1007/BF00272158. [DOI] [PubMed] [Google Scholar]
  18. Petrov D. A., Hartl D. L. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998 Mar;15(3):293–302. doi: 10.1093/oxfordjournals.molbev.a025926. [DOI] [PubMed] [Google Scholar]
  19. Shabalina S. A., Yampolsky LYu, Kondrashov A. S. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13034–13039. doi: 10.1073/pnas.94.24.13034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simmons M. J., Sheldon E. W., Crow J. F. Heterozygous effects on fitness of EMS-treated chromosomes in Drosophila melanogaster. Genetics. 1978 Mar;88(3):575–590. doi: 10.1093/genetics/88.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang H. P., Tanikawa A. Y., Kondrashov A. S. Molecular nature of 11 spontaneous de novo mutations in Drosophila melanogaster. Genetics. 2001 Mar;157(3):1285–1292. doi: 10.1093/genetics/157.3.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ten Have J. F., Green M. M., Howells A. J. Molecular characterization of spontaneous mutations at the scarlet locus of Drosophila melanogaster. Mol Gen Genet. 1995 Dec 20;249(6):673–681. doi: 10.1007/BF00418037. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES