Abstract
Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele.
Full Text
The Full Text of this article is available as a PDF (290.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ang D., Keppel F., Klein G., Richardson A., Georgopoulos C. Genetic analysis of bacteriophage-encoded cochaperonins. Annu Rev Genet. 2000;34:439–456. doi: 10.1146/annurev.genet.34.1.439. [DOI] [PubMed] [Google Scholar]
- Ang D., Richardson A., Mayer M. P., Keppel F., Krisch H., Georgopoulos C. Pseudo-T-even bacteriophage RB49 encodes CocO, a cochaperonin for GroEL, which can substitute for Escherichia coli's GroES and bacteriophage T4's Gp31. J Biol Chem. 2000 Dec 4;276(12):8720–8726. doi: 10.1074/jbc.M008477200. [DOI] [PubMed] [Google Scholar]
- Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
- Doermann A. H., Simon L. D. Bacteriophage T4 bypass31 mutations that make gene 31 nonessential for bacteriophage T4 replication: mapping bypass31 mutations by UV rescue experiments. J Virol. 1984 Aug;51(2):315–320. doi: 10.1128/jvi.51.2.315-320.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ewalt K. L., Hendrick J. P., Houry W. A., Hartl F. U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell. 1997 Aug 8;90(3):491–500. doi: 10.1016/s0092-8674(00)80509-7. [DOI] [PubMed] [Google Scholar]
- Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 Mar;171(3):1379–1385. doi: 10.1128/jb.171.3.1379-1385.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenton W. A., Horwich A. L. GroEL-mediated protein folding. Protein Sci. 1997 Apr;6(4):743–760. doi: 10.1002/pro.5560060401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgopoulos C. P., Hendrix R. W., Casjens S. R., Kaiser A. D. Host participation in bacteriophage lambda head assembly. J Mol Biol. 1973 May 5;76(1):45–60. doi: 10.1016/0022-2836(73)90080-6. [DOI] [PubMed] [Google Scholar]
- Georgopoulos C. P., Hendrix R. W., Kaiser A. D., Wood W. B. Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nat New Biol. 1972 Sep 13;239(89):38–41. doi: 10.1038/newbio239038a0. [DOI] [PubMed] [Google Scholar]
- Glass J. I., Lefkowitz E. J., Glass J. S., Heiner C. R., Chen E. Y., Cassell G. H. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature. 2000 Oct 12;407(6805):757–762. doi: 10.1038/35037619. [DOI] [PubMed] [Google Scholar]
- Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
- Horwich A. L., Weber-Ban E. U., Finley D. Chaperone rings in protein folding and degradation. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11033–11040. doi: 10.1073/pnas.96.20.11033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houry W. A., Frishman D., Eckerskorn C., Lottspeich F., Hartl F. U. Identification of in vivo substrates of the chaperonin GroEL. Nature. 1999 Nov 11;402(6758):147–154. doi: 10.1038/45977. [DOI] [PubMed] [Google Scholar]
- Hunt J. F., Weaver A. J., Landry S. J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature. 1996 Jan 4;379(6560):37–45. doi: 10.1038/379037a0. [DOI] [PubMed] [Google Scholar]
- Hunt J. F., van der Vies S. M., Henry L., Deisenhofer J. Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage. Cell. 1997 Jul 25;90(2):361–371. doi: 10.1016/s0092-8674(00)80343-8. [DOI] [PubMed] [Google Scholar]
- Keppel F., Lipinska B., Ang D., Georgopoulos C. Mutational analysis of the phage T4 morphogenetic 31 gene, whose product interacts with the Escherichia coli GroEL protein. Gene. 1990 Jan 31;86(1):19–25. doi: 10.1016/0378-1119(90)90109-5. [DOI] [PubMed] [Google Scholar]
- Koonin E. V., van der Vies S. M. Conserved sequence motifs in bacterial and bacteriophage chaperonins. Trends Biochem Sci. 1995 Jan;20(1):14–15. doi: 10.1016/s0968-0004(00)88941-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K., Beguin F., Gujer-Kellenberger G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol. 1970 Jan 14;47(1):69–85. doi: 10.1016/0022-2836(70)90402-x. [DOI] [PubMed] [Google Scholar]
- Landry S. J., Taher A., Georgopoulos C., van der Vies S. M. Interplay of structure and disorder in cochaperonin mobile loops. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11622–11627. doi: 10.1073/pnas.93.21.11622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landry S. J., Zeilstra-Ryalls J., Fayet O., Georgopoulos C., Gierasch L. M. Characterization of a functionally important mobile domain of GroES. Nature. 1993 Jul 15;364(6434):255–258. doi: 10.1038/364255a0. [DOI] [PubMed] [Google Scholar]
- Lorimer G. Protein folding. Folding with a two-stroke motor. Nature. 1997 Aug 21;388(6644):720-1, 723. doi: 10.1038/41892. [DOI] [PubMed] [Google Scholar]
- Macario A. J., Lange M., Ahring B. K., Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev. 1999 Dec;63(4):923-67, table of contents. doi: 10.1128/mmbr.63.4.923-967.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monod C., Repoila F., Kutateladze M., Tétart F., Krisch H. M. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J Mol Biol. 1997 Mar 28;267(2):237–249. doi: 10.1006/jmbi.1996.0867. [DOI] [PubMed] [Google Scholar]
- Nivinskas R., Black L. W. Cloning, sequence, and expression of the temperature-dependent phage T4 capsid assembly gene 31. Gene. 1988 Dec 15;73(1):251–257. doi: 10.1016/0378-1119(88)90332-0. [DOI] [PubMed] [Google Scholar]
- Richardson A., Landry S. J., Georgopoulos C. The ins and outs of a molecular chaperone machine. Trends Biochem Sci. 1998 Apr;23(4):138–143. doi: 10.1016/s0968-0004(98)01193-1. [DOI] [PubMed] [Google Scholar]
- Richardson A., van der Vies S. M., Keppel F., Taher A., Landry S. J., Georgopoulos C. Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction. J Biol Chem. 1999 Jan 1;274(1):52–58. doi: 10.1074/jbc.274.1.52. [DOI] [PubMed] [Google Scholar]
- Sigler P. B., Xu Z., Rye H. S., Burston S. G., Fenton W. A., Horwich A. L. Structure and function in GroEL-mediated protein folding. Annu Rev Biochem. 1998;67:581–608. doi: 10.1146/annurev.biochem.67.1.581. [DOI] [PubMed] [Google Scholar]
- Simon L. D., Randolph B. Bacteriophage T4 bypass31 mutations that make gene 31 nonessential for bacteriophage T4 replication: isolation and characterization. J Virol. 1984 Aug;51(2):321–328. doi: 10.1128/jvi.51.2.321-328.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilly K., Georgopoulos C. Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo. J Bacteriol. 1982 Mar;149(3):1082–1088. doi: 10.1128/jb.149.3.1082-1088.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilly K., Murialdo H., Georgopoulos C. Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1629–1633. doi: 10.1073/pnas.78.3.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Z., Horwich A. L., Sigler P. B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 1997 Aug 21;388(6644):741–750. doi: 10.1038/41944. [DOI] [PubMed] [Google Scholar]
- Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]
- Zeilstra-Ryalls J., Fayet O., Baird L., Georgopoulos C. Sequence analysis and phenotypic characterization of groEL mutations that block lambda and T4 bacteriophage growth. J Bacteriol. 1993 Feb;175(4):1134–1143. doi: 10.1128/jb.175.4.1134-1143.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeilstra-Ryalls J., Fayet O., Georgopoulos C. Two classes of extragenic suppressor mutations identify functionally distinct regions of the GroEL chaperone of Escherichia coli. J Bacteriol. 1994 Nov;176(21):6558–6565. doi: 10.1128/jb.176.21.6558-6565.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Vies S. M., Gatenby A. A., Georgopoulos C. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature. 1994 Apr 14;368(6472):654–656. doi: 10.1038/368654a0. [DOI] [PubMed] [Google Scholar]
