Abstract
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.
Full Text
The Full Text of this article is available as a PDF (423.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertioli D. J., Schlichter U. H., Adams M. J., Burrows P. R., Steinbiss H. H., Antoniw J. F. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 1995 Nov 11;23(21):4520–4523. doi: 10.1093/nar/23.21.4520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billingsley P. F., Rudin W. The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species. J Parasitol. 1992 Jun;78(3):430–440. [PubMed] [Google Scholar]
- Billingsley P. F. Vector-parasite interactions for vaccine development. Int J Parasitol. 1994 Feb;24(1):53–58. doi: 10.1016/0020-7519(94)90058-2. [DOI] [PubMed] [Google Scholar]
- Casu R., Eisemann C., Pearson R., Riding G., East I., Donaldson A., Cadogan L., Tellam R. Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):8939–8944. doi: 10.1073/pnas.94.17.8939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catteruccia F., Nolan T., Blass C., Muller H. M., Crisanti A., Kafatos F. C., Loukeris T. G. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2157–2162. doi: 10.1073/pnas.040568397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins F. H., Paskewitz S. M. Malaria: current and future prospects for control. Annu Rev Entomol. 1995;40:195–219. doi: 10.1146/annurev.en.40.010195.001211. [DOI] [PubMed] [Google Scholar]
- Crampton J. M., Warren A., Lycett G. J., Hughes M. A., Comley I. P., Eggleston P. Genetic manipulation of insect vectors as a strategy for the control of vector-borne disease. Ann Trop Med Parasitol. 1994 Feb;88(1):3–12. doi: 10.1080/00034983.1994.11812828. [DOI] [PubMed] [Google Scholar]
- Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E. D. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025–6030. doi: 10.1073/pnas.93.12.6025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimopoulos G., Richman A., della Torre A., Kafatos F. C., Louis C. Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13066–13071. doi: 10.1073/pnas.93.23.13066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elvin C. M., Vuocolo T., Pearson R. D., East I. J., Riding G. A., Eisemann C. H., Tellam R. L. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J Biol Chem. 1996 Apr 12;271(15):8925–8935. doi: 10.1074/jbc.271.15.8925. [DOI] [PubMed] [Google Scholar]
- Gendler S. J., Spicer A. P. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–634. doi: 10.1146/annurev.ph.57.030195.003135. [DOI] [PubMed] [Google Scholar]
- Giovannoni J. J., Wing R. A., Ganal M. W., Tanksley S. D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 1991 Dec 11;19(23):6553–6558. doi: 10.1093/nar/19.23.6553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. E., Lund O., Tolstrup N., Gooley A. A., Williams K. L., Brunak S. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J. 1998 Feb;15(2):115–130. doi: 10.1023/a:1006960004440. [DOI] [PubMed] [Google Scholar]
- Hubank M., Schatz D. G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 1994 Dec 25;22(25):5640–5648. doi: 10.1093/nar/22.25.5640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber M., Cabib E., Miller L. H. Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2807–2810. doi: 10.1073/pnas.88.7.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasinskiene N., Coates C. J., Benedict M. Q., Cornel A. J., Rafferty C. S., James A. A., Collins F. H. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3743–3747. doi: 10.1073/pnas.95.7.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang D., Liu G., Gunne H., Steiner H. PCR differential display of immune gene expression in Trichoplusia ni. Insect Biochem Mol Biol. 1996 Feb;26(2):177–184. doi: 10.1016/0965-1748(95)00080-1. [DOI] [PubMed] [Google Scholar]
- Kilama W. L., Craig G. B., Jr Monofactorial inheritance of susceptibility to Plasmodium Gallinaceum in Aedes aegypti. Ann Trop Med Parasitol. 1969 Dec;63(4):419–432. doi: 10.1080/00034983.1969.11686645. [DOI] [PubMed] [Google Scholar]
- Kohroki J., Tsuchiya M., Fujita S., Nakanishi T., Itoh N., Tanaka K. A novel strategy for identifying differential gene expression: An improved method of differential display analysis. Biochem Biophys Res Commun. 1999 Aug 27;262(2):365–367. doi: 10.1006/bbrc.1999.1211. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Lee S. W., Tomasetto C., Sager R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2825–2829. doi: 10.1073/pnas.88.7.2825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang P., Averboukh L., Pardee A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):3269–3275. doi: 10.1093/nar/21.14.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
- Luce M. J., Burrows P. D. Minimizing false positives in differential display. Biotechniques. 1998 May;24(5):766-8, 770. doi: 10.2144/98245bm16. [DOI] [PubMed] [Google Scholar]
- Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson K. E., Myles K. M., Seabaugh R. C., Higgs S., Carlson J. O., Beaty B. J. Development of a Sindbis virus expression system that efficiently expresses green fluorescent protein in midguts of Aedes aegypti following per os infection. Insect Mol Biol. 2000 Feb;9(1):57–65. doi: 10.1046/j.1365-2583.2000.00162.x. [DOI] [PubMed] [Google Scholar]
- Prashar Y., Weissman S. M. Analysis of differential gene expression by display of 3' end restriction fragments of cDNAs. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):659–663. doi: 10.1073/pnas.93.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramasamy R., Wanniarachchi I. C., Srikrishnaraj K. A., Ramasamy M. S. Mosquito midgut glycoproteins and recognition sites for malaria parasites. Biochim Biophys Acta. 1997 Jul 10;1361(1):114–122. doi: 10.1016/s0925-4439(97)00020-3. [DOI] [PubMed] [Google Scholar]
- Rayms-Keller A., McGaw M., Oray C., Carlson J. O., Beaty B. J. Molecular cloning and characterization of a metal responsive Aedes aegypti intestinal mucin cDNA. Insect Mol Biol. 2000 Aug;9(4):419–426. doi: 10.1046/j.1365-2583.2000.00202.x. [DOI] [PubMed] [Google Scholar]
- Richards A. G., Richards P. A. The peritrophic membranes of insects. Annu Rev Entomol. 1977;22:219–240. doi: 10.1146/annurev.en.22.010177.001251. [DOI] [PubMed] [Google Scholar]
- Schroeder A. A., Lawrence C. E., Abrahamsen M. S. Differential mRNA display cloning and characterization of a Cryptosporidium parvum gene expressed during intracellular development. J Parasitol. 1999 Apr;85(2):213–220. [PubMed] [Google Scholar]
- Severson D. W., Thathy V., Mori A., Zhang Y., Christensen B. M. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics. 1995 Apr;139(4):1711–1717. doi: 10.1093/genetics/139.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Severson D. W., Zaitlin D., Kassner V. A. Targeted identification of markers linked to malaria and filarioid nematode parasite resistance genes in the mosquito Aedes aegypti. Genet Res. 1999 Jun;73(3):217–224. doi: 10.1017/s0016672399003791. [DOI] [PubMed] [Google Scholar]
- Shahabuddin M., Criscio M., Kaslow D. C. Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity. Exp Parasitol. 1995 Mar;80(2):212–219. doi: 10.1006/expr.1995.1026. [DOI] [PubMed] [Google Scholar]
- Shahabuddin M., Lemos F. J., Kaslow D. C., Jacobs-Lorena M. Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum. Infect Immun. 1996 Mar;64(3):739–743. doi: 10.1128/iai.64.3.739-743.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shahabuddin M. Plasmodium ookinete development in the mosquito midgut: a case of reciprocal manipulation. Parasitology. 1998;116 (Suppl):S83–S93. doi: 10.1017/s0031182000084973. [DOI] [PubMed] [Google Scholar]
- Shahabuddin M., Toyoshima T., Aikawa M., Kaslow D. C. Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4266–4270. doi: 10.1073/pnas.90.9.4266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen Z., Jacobs-Lorena M. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem. 1998 Jul 10;273(28):17665–17670. doi: 10.1074/jbc.273.28.17665. [DOI] [PubMed] [Google Scholar]
- Shen Z., Jacobs-Lorena M. Evolution of chitin-binding proteins in invertebrates. J Mol Evol. 1999 Mar;48(3):341–347. doi: 10.1007/pl00006478. [DOI] [PubMed] [Google Scholar]
- Sieber K. P., Huber M., Kaslow D., Banks S. M., Torii M., Aikawa M., Miller L. H. The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp Parasitol. 1991 Feb;72(2):145–156. doi: 10.1016/0014-4894(91)90132-g. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Yaoi T., Kawai J., Hara A., Kuwajima G., Wantanabe S. Restriction landmark cDNA scanning (RLCS): a novel cDNA display system using two-dimensional gel electrophoresis. Nucleic Acids Res. 1996 Jan 15;24(2):289–294. doi: 10.1093/nar/24.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tellam R. L., Wijffels G., Willadsen P. Peritrophic matrix proteins. Insect Biochem Mol Biol. 1999 Feb;29(2):87–101. doi: 10.1016/s0965-1748(98)00123-4. [DOI] [PubMed] [Google Scholar]
- Wang P., Granados R. R. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem. 1997 Jun 27;272(26):16663–16669. doi: 10.1074/jbc.272.26.16663. [DOI] [PubMed] [Google Scholar]
- Zieler H., Nawrocki J. P., Shahabuddin M. Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J Exp Biol. 1999 Mar;202(Pt 5):485–495. doi: 10.1242/jeb.202.5.485. [DOI] [PubMed] [Google Scholar]