Skip to main content
Genetics logoLink to Genetics
. 2001 Sep;159(1):371–387. doi: 10.1093/genetics/159.1.371

A statistical framework for quantitative trait mapping.

S Sen 1, G A Churchill 1
PMCID: PMC1461799  PMID: 11560912

Abstract

We describe a general statistical framework for the genetic analysis of quantitative trait data in inbred line crosses. Our main result is based on the observation that, by conditioning on the unobserved QTL genotypes, the problem can be split into two statistically independent and manageable parts. The first part involves only the relationship between the QTL and the phenotype. The second part involves only the location of the QTL in the genome. We developed a simple Monte Carlo algorithm to implement Bayesian QTL analysis. This algorithm simulates multiple versions of complete genotype information on a genomewide grid of locations using information in the marker genotype data. Weights are assigned to the simulated genotypes to capture information in the phenotype data. The weighted complete genotypes are used to approximate quantities needed for statistical inference of QTL locations and effect sizes. One advantage of this approach is that only the weights are recomputed as the analyst considers different candidate models. This device allows the analyst to focus on modeling and model comparisons. The proposed framework can accommodate multiple interacting QTL, nonnormal and multivariate phenotypes, covariates, missing genotype data, and genotyping errors in any type of inbred line cross. A software tool implementing this procedure is available. We demonstrate our approach to QTL analysis using data from a mouse backcross population that is segregating multiple interacting QTL associated with salt-induced hypertension.

Full Text

The Full Text of this article is available as a PDF (291.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet. 1998 Jan;18(1):19–24. doi: 10.1038/ng0198-19. [DOI] [PubMed] [Google Scholar]
  3. Dupuis J., Siegmund D. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics. 1999 Jan;151(1):373–386. doi: 10.1093/genetics/151.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  5. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kao C. H. On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics. 2000 Oct;156(2):855–865. doi: 10.1093/genetics/156.2.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kong A., Wright F. Asymptotic theory for gene mapping. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9705–9709. doi: 10.1073/pnas.91.21.9705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Korol A. B., Ronin Y. I., Kirzhner V. M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics. 1995 Jul;140(3):1137–1147. doi: 10.1093/genetics/140.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  14. Lincoln S. E., Lander E. S. Systematic detection of errors in genetic linkage data. Genomics. 1992 Nov;14(3):604–610. doi: 10.1016/s0888-7543(05)80158-2. [DOI] [PubMed] [Google Scholar]
  15. MORTON N. E. Sequential tests for the detection of linkage. Am J Hum Genet. 1955 Sep;7(3):277–318. [PMC free article] [PubMed] [Google Scholar]
  16. Rapp J. P. Genetic analysis of inherited hypertension in the rat. Physiol Rev. 2000 Jan;80(1):135–172. doi: 10.1152/physrev.2000.80.1.135. [DOI] [PubMed] [Google Scholar]
  17. Ronin Y. I., Korol A. B., Nevo E. Single- and multiple-trait mapping analysis of linked quantitative trait loci. Some asymptotic analytical approximations. Genetics. 1999 Jan;151(1):387–396. doi: 10.1093/genetics/151.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sax K. The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. Genetics. 1923 Nov;8(6):552–560. doi: 10.1093/genetics/8.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schork N. J., Boehnke M., Terwilliger J. D., Ott J. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am J Hum Genet. 1993 Nov;53(5):1127–1136. [PMC free article] [PubMed] [Google Scholar]
  21. Shepel L. A., Lan H., Haag J. D., Brasic G. M., Gheen M. E., Simon J. S., Hoff P., Newton M. A., Gould M. N. Genetic identification of multiple loci that control breast cancer susceptibility in the rat. Genetics. 1998 May;149(1):289–299. doi: 10.1093/genetics/149.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sugiyama F., Churchill G. A., Higgins D. C., Johns C., Makaritsis K. P., Gavras H., Paigen B. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics. 2001 Jan 1;71(1):70–77. doi: 10.1006/geno.2000.6401. [DOI] [PubMed] [Google Scholar]
  24. Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wright F. A., Kong A. Linkage mapping in experimental crosses: the robustness of single-gene models. Genetics. 1997 May;146(1):417–425. doi: 10.1093/genetics/146.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhao H., Speed T. P., McPeek M. S. Statistical analysis of crossover interference using the chi-square model. Genetics. 1995 Feb;139(2):1045–1056. doi: 10.1093/genetics/139.2.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES