Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):441–452. doi: 10.1093/genetics/159.2.441

Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae.

D M Wloch 1, K Szafraniec 1, R H Borts 1, R Korona 1
PMCID: PMC1461830  PMID: 11606524

Abstract

Estimates of the rate and frequency distribution of deleterious effects were obtained for the first time by direct scoring and characterization of individual mutations. This was achieved by applying tetrad analysis to a large number of yeast clones. The genomic rate of spontaneous mutation deleterious to a basic fitness-related trait, that of growth rate, was U = 1.1 x 10(-3) per diploid cell division. Extrapolated to the fruit fly and humans, the per generation rate would be 0.074 and 0.92, respectively. This is likely to be an underestimate because single mutations with selection coefficients s < 0.01 could not be detected. The distribution of s > or = 0.01 was studied both for spontaneous and induced mutations. The latter were induced by ethyl methanesulfonate (EMS) or resulted from defective mismatch repair. Lethal changes accounted for approximately 30-40% of the scored mutations. The mean s of nonlethal mutations was fairly high, but most frequently its value was between 0.01 and 0.05. Although the rate and distribution of very small effects could not be determined, the joint share of such mutations in decreasing average fitness was probably no larger than approximately 1%.

Full Text

The Full Text of this article is available as a PDF (144.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Baganz F., Hayes A., Marren D., Gardner D. C., Oliver S. G. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast. 1997 Dec;13(16):1563–1573. doi: 10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  3. Barton N. H. A general model for the evolution of recombination. Genet Res. 1995 Apr;65(2):123–145. doi: 10.1017/s0016672300033140. [DOI] [PubMed] [Google Scholar]
  4. Charlesworth B., Charlesworth D. Some evolutionary consequences of deleterious mutations. Genetica. 1998;102-103(1-6):3–19. [PubMed] [Google Scholar]
  5. Crow J. F. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000 Oct;1(1):40–47. doi: 10.1038/35049558. [DOI] [PubMed] [Google Scholar]
  6. Davies E. K., Peters A. D., Keightley P. D. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science. 1999 Sep 10;285(5434):1748–1751. doi: 10.1126/science.285.5434.1748. [DOI] [PubMed] [Google Scholar]
  7. Deng H. W., Lynch M. Estimation of deleterious-mutation parameters in natural populations. Genetics. 1996 Sep;144(1):349–360. doi: 10.1093/genetics/144.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Entian K. D., Schuster T., Hegemann J. H., Becher D., Feldmann H., Güldener U., Götz R., Hansen M., Hollenberg C. P., Jansen G. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet. 1999 Dec;262(4-5):683–702. doi: 10.1007/pl00013817. [DOI] [PubMed] [Google Scholar]
  10. Eyre-Walker A., Keightley P. D. High genomic deleterious mutation rates in hominids. Nature. 1999 Jan 28;397(6717):344–347. doi: 10.1038/16915. [DOI] [PubMed] [Google Scholar]
  11. Feldman M. W., Christiansen F. B., Brooks L. D. Evolution of recombination in a constant environment. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4838–4841. doi: 10.1073/pnas.77.8.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fernández J., López-Fanjul C. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics. 1996 Jun;143(2):829–837. doi: 10.1093/genetics/143.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fry J. D., Keightley P. D., Heinsohn S. L., Nuzhdin S. V. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574–579. doi: 10.1073/pnas.96.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Galitski T., Saldanha A. J., Styles C. A., Lander E. S., Fink G. R. Ploidy regulation of gene expression. Science. 1999 Jul 9;285(5425):251–254. doi: 10.1126/science.285.5425.251. [DOI] [PubMed] [Google Scholar]
  15. García-Dorado A., López-Fanjul C., Caballero A. Properties of spontaneous mutations affecting quantitative traits. Genet Res. 1999 Dec;74(3):341–350. doi: 10.1017/s0016672399004206. [DOI] [PubMed] [Google Scholar]
  16. Gessler D. D., Xu S. Meiosis and the evolution of recombination at low mutation rates. Genetics. 2000 Sep;156(1):449–456. doi: 10.1093/genetics/156.1.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hampsey M. A review of phenotypes in Saccharomyces cerevisiae. Yeast. 1997 Sep 30;13(12):1099–1133. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1099::AID-YEA177>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  18. Keightley P. D., Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. doi: 10.1073/pnas.94.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keightley P. D., Eyre-Walker A. Deleterious mutations and the evolution of sex. Science. 2000 Oct 13;290(5490):331–333. doi: 10.1126/science.290.5490.331. [DOI] [PubMed] [Google Scholar]
  20. Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kimura M., Maruyama T. The mutational load with epistatic gene interactions in fitness. Genetics. 1966 Dec;54(6):1337–1351. doi: 10.1093/genetics/54.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996 Jun 15;10(12):1433–1442. doi: 10.1101/gad.10.12.1433. [DOI] [PubMed] [Google Scholar]
  25. Kondrashov A. S., Crow J. F. Haploidy or diploidy: which is better? Nature. 1991 May 23;351(6324):314–315. doi: 10.1038/351314a0. [DOI] [PubMed] [Google Scholar]
  26. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  27. Korona R. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae. Genetics. 1999 Jan;151(1):77–85. doi: 10.1093/genetics/151.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  29. MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
  31. McCusker J. H., Perlin D. S., Haber J. E. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):4082–4088. doi: 10.1128/mcb.7.11.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McVean G. A., Vieira J. Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics. 2001 Jan;157(1):245–257. doi: 10.1093/genetics/157.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Perrot V., Richerd S., Valéro M. Transition from haploidy to diploidy. Nature. 1991 May 23;351(6324):315–317. doi: 10.1038/351315a0. [DOI] [PubMed] [Google Scholar]
  35. Reenan R. A., Kolodner R. D. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics. 1992 Dec;132(4):963–973. doi: 10.1093/genetics/132.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shabalina S. A., Yampolsky LYu, Kondrashov A. S. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13034–13039. doi: 10.1073/pnas.94.24.13034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith V., Chou K. N., Lashkari D., Botstein D., Brown P. O. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science. 1996 Dec 20;274(5295):2069–2074. doi: 10.1126/science.274.5295.2069. [DOI] [PubMed] [Google Scholar]
  38. Szafraniec K., Borts R. H., Korona R. Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2001 Jan 16;98(3):1107–1112. doi: 10.1073/pnas.021390798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vassilieva L. L., Hook A. M., Lynch M. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution. 2000 Aug;54(4):1234–1246. doi: 10.1111/j.0014-3820.2000.tb00557.x. [DOI] [PubMed] [Google Scholar]
  40. Yang H. P., Tanikawa A. Y., Van Voorhies W. A., Silva J. C., Kondrashov A. S. Whole-genome effects of ethyl methanesulfonate-induced mutation on nine quantitative traits in outbred Drosophila melanogaster. Genetics. 2001 Mar;157(3):1257–1265. doi: 10.1093/genetics/157.3.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zeyl C., DeVisser J. A. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 2001 Jan;157(1):53–61. doi: 10.1093/genetics/157.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES