Abstract
We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening approximately 38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype.
Full Text
The Full Text of this article is available as a PDF (315.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altmann T., Felix G., Jessop A., Kauschmann A., Uwer U., Peña-Cortés H., Willmitzer L. Ac/Ds transposon mutagenesis in Arabidopsis thaliana: mutant spectrum and frequency of Ds insertion mutants. Mol Gen Genet. 1995 Jun 10;247(5):646–652. doi: 10.1007/BF00290357. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amin P., Sy D. A., Pilgrim M. L., Parry D. H., Nussaume L., Hoffman N. E. Arabidopsis mutants lacking the 43- and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol. 1999 Sep;121(1):61–70. doi: 10.1104/pp.121.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Assaad F. F., Huet Y., Mayer U., Jürgens G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J Cell Biol. 2001 Feb 5;152(3):531–543. doi: 10.1083/jcb.152.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bancroft I., Jones J. D., Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell. 1993 Jun;5(6):631–638. doi: 10.1105/tpc.5.6.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatt A. M., Page T., Lawson E. J., Lister C., Dean C. Use of Ac as an insertional mutagen in Arabidopsis. Plant J. 1996 Jun;9(6):935–945. doi: 10.1046/j.1365-313x.1996.9060935.x. [DOI] [PubMed] [Google Scholar]
- Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem. 1998 Jul 17;273(29):18003–18006. doi: 10.1074/jbc.273.29.18003. [DOI] [PubMed] [Google Scholar]
- Bossy B., Hall L. M., Spierer P. Genetic activity along 315 kb of the Drosophila chromosome. EMBO J. 1984 Nov;3(11):2537–2541. doi: 10.1002/j.1460-2075.1984.tb02169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggs W. R., Huala E. Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol. 1999;15:33–62. doi: 10.1146/annurev.cellbio.15.1.33. [DOI] [PubMed] [Google Scholar]
- Castle L. A., Errampalli D., Atherton T. L., Franzmann L. H., Yoon E. S., Meinke D. W. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet. 1993 Dec;241(5-6):504–514. doi: 10.1007/BF00279892. [DOI] [PubMed] [Google Scholar]
- Cheng J. C., Seeley K. A., Sung Z. R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 1995 Feb;107(2):365–376. doi: 10.1104/pp.107.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J., Ecker J. R., Briggs S., Caboche M., Coruzzi G. M., Cook D., Dangl J., Grant S., Guerinot M. L., Henikoff S. National Science Foundation-Sponsored Workshop Report: "The 2010 Project" functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol. 2000 Jun;123(2):423–426. doi: 10.1104/pp.123.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuang C. F., Meyerowitz E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4985–4990. doi: 10.1073/pnas.060034297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clouse S. D., Langford M., McMorris T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996 Jul;111(3):671–678. doi: 10.1104/pp.111.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collett C. E., Harberd N. P., Leyser O. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol. 2000 Oct;124(2):553–562. doi: 10.1104/pp.124.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000 Jul 21;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. [DOI] [PubMed] [Google Scholar]
- Errampalli D., Patton D., Castle L., Mickelson L., Hansen K., Schnall J., Feldmann K., Meinke D. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis. Plant Cell. 1991 Feb;3(2):149–157. doi: 10.1105/tpc.3.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisk D. G., Walker M. B., Barkan A. Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J. 1999 May 4;18(9):2621–2630. doi: 10.1093/emboj/18.9.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
- Guyer D., Tuttle A., Rouse S., Volrath S., Johnson M., Potter S., Görlach J., Goff S., Crossland L., Ward E. Activation of latent transgenes in Arabidopsis using a hybrid transcription factor. Genetics. 1998 Jun;149(2):633–639. doi: 10.1093/genetics/149.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis P., Chen L. J., Li H., Peto C. A., Fankhauser C., Chory J. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science. 1998 Oct 2;282(5386):100–103. doi: 10.1126/science.282.5386.100. [DOI] [PubMed] [Google Scholar]
- Kempin S. A., Savidge B., Yanofsky M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995 Jan 27;267(5197):522–525. doi: 10.1126/science.7824951. [DOI] [PubMed] [Google Scholar]
- Ko K., Budd D., Wu C., Seibert F., Kourtz L., Ko Z. W. Isolation and characterization of a cDNA clone encoding a member of the Com44/Cim44 envelope components of the chloroplast protein import apparatus. J Biol Chem. 1995 Dec 1;270(48):28601–28608. doi: 10.1074/jbc.270.48.28601. [DOI] [PubMed] [Google Scholar]
- Levin J. Z., de Framond A. J., Tuttle A., Bauer M. W., Heifetz P. B. Methods of double-stranded RNA-mediated gene inactivation in Arabidopsis and their use to define an essential gene in methionine biosynthesis. Plant Mol Biol. 2000 Dec;44(6):759–775. doi: 10.1023/a:1026584607941. [DOI] [PubMed] [Google Scholar]
- Li S. L., Rédei G. P. Thiamine mutants of the crucifer, Arabidopsis. Biochem Genet. 1969 Apr;3(2):163–170. doi: 10.1007/BF00520351. [DOI] [PubMed] [Google Scholar]
- Lichtenthaler H. K., Zeidler J., Schwender J., Müller C. The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z Naturforsch C. 2000 May-Jun;55(5-6):305–313. doi: 10.1515/znc-2000-5-601. [DOI] [PubMed] [Google Scholar]
- Lichtenthaler Hartmut K. THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):47–65. doi: 10.1146/annurev.arplant.50.1.47. [DOI] [PubMed] [Google Scholar]
- Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995 Sep;8(3):457–463. doi: 10.1046/j.1365-313x.1995.08030457.x. [DOI] [PubMed] [Google Scholar]
- Lois L. M., Campos N., Putra S. R., Danielsen K., Rohmer M., Boronat A. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2105–2110. doi: 10.1073/pnas.95.5.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long D., Goodrich J., Wilson K., Sundberg E., Martin M., Puangsomlee P., Coupland G. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 1997 Jan;11(1):145–148. doi: 10.1046/j.1365-313x.1997.11010145.x. [DOI] [PubMed] [Google Scholar]
- Long D., Martin M., Sundberg E., Swinburne J., Puangsomlee P., Coupland G. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10370–10374. doi: 10.1073/pnas.90.21.10370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel M. A., Feldmann K. A., Herrera-Estrella L., Rocha-Sosa M., León P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 1996 May;9(5):649–658. doi: 10.1046/j.1365-313x.1996.9050649.x. [DOI] [PubMed] [Google Scholar]
- McElver J., Tzafrir I., Aux G., Rogers R., Ashby C., Smith K., Thomas C., Schetter A., Zhou Q., Cushman M. A. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics. 2001 Dec;159(4):1751–1763. doi: 10.1093/genetics/159.4.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner R. C., Jin H., Cominelli E., Denekamp M., Fuertes A., Greco R., Kranz H. D., Penfield S., Petroni K., Urzainqui A. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell. 1999 Oct;11(10):1827–1840. doi: 10.1105/tpc.11.10.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meurer J., Grevelding C., Westhoff P., Reiss B. The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Mol Gen Genet. 1998 May;258(4):342–351. doi: 10.1007/s004380050740. [DOI] [PubMed] [Google Scholar]
- Miséra S., Müller A. J., Weiland-Heidecker U., Jürgens G. The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet. 1994 Aug 2;244(3):242–252. doi: 10.1007/BF00285451. [DOI] [PubMed] [Google Scholar]
- Mol K., Kaptein E., Darras V. M., de Greef W. J., Kühn E. R., Visser T. J. Different thyroid hormone-deiodinating enzymes in tilapia (Oreochromis niloticus) liver and kidney. FEBS Lett. 1993 Apr 26;321(2-3):140–144. doi: 10.1016/0014-5793(93)80095-c. [DOI] [PubMed] [Google Scholar]
- Motohashi R., Nagata N., Ito T., Takahashi S., Hobo T., Yoshida S., Shinozaki K. An essential role of a TatC homologue of a Delta pH- dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10499–10504. doi: 10.1073/pnas.181304598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nacry P., Camilleri C., Courtial B., Caboche M., Bouchez D. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics. 1998 Jun;149(2):641–650. doi: 10.1093/genetics/149.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parinov S., Sevugan M., Ye D., Yang W. C., Kumaran M., Sundaresan V. Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell. 1999 Dec;11(12):2263–2270. doi: 10.1105/tpc.11.12.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parinov S., Sundaresan V. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol. 2000 Apr;11(2):157–161. doi: 10.1016/s0958-1669(00)00075-6. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepper A., Delaney T., Washburn T., Poole D., Chory J. DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell. 1994 Jul 15;78(1):109–116. doi: 10.1016/0092-8674(94)90577-0. [DOI] [PubMed] [Google Scholar]
- Reed J. W., Nagpal P., Bastow R. M., Solomon K. S., Dowson-Day M. J., Elumalai R. P., Millar A. J. Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol. 2000 Apr;122(4):1149–1160. doi: 10.1104/pp.122.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiter R. S., Coomber S. A., Bourett T. M., Bartley G. E., Scolnik P. A. Control of leaf and chloroplast development by the Arabidopsis gene pale cress. Plant Cell. 1994 Sep;6(9):1253–1264. doi: 10.1105/tpc.6.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohdich F., Wungsintaweekul J., Eisenreich W., Richter G., Schuhr C. A., Hecht S., Zenk M. H., Bacher A. Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6451–6456. doi: 10.1073/pnas.97.12.6451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohdich F., Wungsintaweekul J., Fellermeier M., Sagner S., Herz S., Kis K., Eisenreich W., Bacher A., Zenk M. H. Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11758–11763. doi: 10.1073/pnas.96.21.11758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohmer M. Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs? Prog Drug Res. 1998;50:135–154. doi: 10.1007/978-3-0348-8833-2_3. [DOI] [PubMed] [Google Scholar]
- Roldán M., Gómez-Mena C., Ruiz-García L., Salinas J., Martínez-Zapater J. M. Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J. 1999 Dec;20(5):581–590. doi: 10.1046/j.1365-313x.1999.00632.x. [DOI] [PubMed] [Google Scholar]
- Runge S., van Cleve B., Lebedev N., Armstrong G., Apel K. Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta. 1995;197(3):490–500. doi: 10.1007/BF00196671. [DOI] [PubMed] [Google Scholar]
- Schleiff E., Soll J. Travelling of proteins through membranes: translocation into chloroplasts. Planta. 2000 Sep;211(4):449–456. doi: 10.1007/s004250000357. [DOI] [PubMed] [Google Scholar]
- Schultes N. P., Sawers R. J., Brutnell T. P., Krueger R. W. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J. 2000 Feb;21(4):317–327. doi: 10.1046/j.1365-313x.2000.00676.x. [DOI] [PubMed] [Google Scholar]
- Schwender J., Müller C., Zeidler J., Lichtenthaler H. K. Cloning and heterologous expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett. 1999 Jul 16;455(1-2):140–144. doi: 10.1016/s0014-5793(99)00849-2. [DOI] [PubMed] [Google Scholar]
- Schwender J., Seemann M., Lichtenthaler H. K., Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996 May 15;316(Pt 1):73–80. doi: 10.1042/bj3160073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Settles A. M., Yonetani A., Baron A., Bush D. R., Cline K., Martienssen R. Sec-independent protein translocation by the maize Hcf106 protein. Science. 1997 Nov 21;278(5342):1467–1470. doi: 10.1126/science.278.5342.1467. [DOI] [PubMed] [Google Scholar]
- Stahl T., Glockmann C., Soll J., Heins L. Tic40, a new "old" subunit of the chloroplast protein import translocon. J Biol Chem. 1999 Dec 24;274(52):37467–37472. doi: 10.1074/jbc.274.52.37467. [DOI] [PubMed] [Google Scholar]
- Sundaresan V., Springer P., Volpe T., Haward S., Jones J. D., Dean C., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 1995 Jul 15;9(14):1797–1810. doi: 10.1101/gad.9.14.1797. [DOI] [PubMed] [Google Scholar]
- Susek R. E., Ausubel F. M., Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell. 1993 Sep 10;74(5):787–799. doi: 10.1016/0092-8674(93)90459-4. [DOI] [PubMed] [Google Scholar]
- Takahashi S., Kuzuyama T., Watanabe H., Seto H. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9879–9884. doi: 10.1073/pnas.95.17.9879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vision T. J., Brown D. G., Tanksley S. D. The origins of genomic duplications in Arabidopsis. Science. 2000 Dec 15;290(5499):2114–2117. doi: 10.1126/science.290.5499.2114. [DOI] [PubMed] [Google Scholar]
- Vizir I. Y., Anderson M. L., Wilson Z. A., Mulligan B. J. Isolation of deficiencies in the Arabidopsis genome by gamma-irradiation of pollen. Genetics. 1994 Aug;137(4):1111–1119. doi: 10.1093/genetics/137.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walden R., Fritze K., Hayashi H., Miklashevichs E., Harling H., Schell J. Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol Biol. 1994 Dec;26(5):1521–1528. doi: 10.1007/BF00016488. [DOI] [PubMed] [Google Scholar]
- Walker M. B., Roy L. M., Coleman E., Voelker R., Barkan A. The maize tha4 gene functions in sec-independent protein transport in chloroplasts and is related to hcf106, tatA, and tatB. J Cell Biol. 1999 Oct 18;147(2):267–276. doi: 10.1083/jcb.147.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterhouse P. M., Graham M. W., Wang M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13959–13964. doi: 10.1073/pnas.95.23.13959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigel D., Ahn J. H., Blázquez M. A., Borevitz J. O., Christensen S. K., Fankhauser C., Ferrándiz C., Kardailsky I., Malancharuvil E. J., Neff M. M. Activation tagging in Arabidopsis. Plant Physiol. 2000 Apr;122(4):1003–1013. doi: 10.1104/pp.122.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
