Abstract
Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks.
Full Text
The Full Text of this article is available as a PDF (250.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. C., Scheet P. A. Improving the estimation of bacterial allele frequencies. Genetics. 2001 Jul;158(3):1383–1386. doi: 10.1093/genetics/158.3.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balmelli T., Piffaretti J. C. Analysis of the genetic polymorphism of Borrelia burgdorferi sensu lato by multilocus enzyme electrophoresis. Int J Syst Bacteriol. 1996 Jan;46(1):167–172. doi: 10.1099/00207713-46-1-167. [DOI] [PubMed] [Google Scholar]
- Baranton G., Marti Ras N., Postic D. Molecular epidemiology of the aetiological agents of Lyme borreliosis. Wien Klin Wochenschr. 1998 Dec 23;110(24):850–855. [PubMed] [Google Scholar]
- Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
- Black W. C., 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10034–10038. doi: 10.1073/pnas.91.21.10034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis. 1993;25(4):441–448. doi: 10.3109/00365549309008525. [DOI] [PubMed] [Google Scholar]
- Casjens S., Palmer N., van Vugt R., Huang W. M., Stevenson B., Rosa P., Lathigra R., Sutton G., Peterson J., Dodson R. J. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000 Feb;35(3):490–516. doi: 10.1046/j.1365-2958.2000.01698.x. [DOI] [PubMed] [Google Scholar]
- Centers for Disease Control and Prevention (CDC) Adolescent homicide--Fulton County, Georgia, 1988-1992. MMWR Morb Mortal Wkly Rep. 1994 Oct 14;43(40):728–730. [PubMed] [Google Scholar]
- Dennis D. T., Nekomoto T. S., Victor J. C., Paul W. S., Piesman J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol. 1998 Sep;35(5):629–638. doi: 10.1093/jmedent/35.5.629. [DOI] [PubMed] [Google Scholar]
- Dykhuizen D. E., Baranton G. The implications of a low rate of horizontal transfer in Borrelia. Trends Microbiol. 2001 Jul;9(7):344–350. doi: 10.1016/s0966-842x(01)02066-2. [DOI] [PubMed] [Google Scholar]
- Dykhuizen D. E., Polin D. S., Dunn J. J., Wilske B., Preac-Mursic V., Dattwyler R. J., Luft B. J. Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10163–10167. doi: 10.1073/pnas.90.21.10163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
- Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmore R. D., Jr, Piesman J. Inhibition of Borrelia burgdorferi migration from the midgut to the salivary glands following feeding by ticks on OspC-immunized mice. Infect Immun. 2000 Jan;68(1):411–414. doi: 10.1128/iai.68.1.411-414.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harpending H. C., Batzer M. A., Gurven M., Jorde L. B., Rogers A. R., Sherry S. T. Genetic traces of ancient demography. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1961–1967. doi: 10.1073/pnas.95.4.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000 Jun 22;405(6789):907–913. doi: 10.1038/35016000. [DOI] [PubMed] [Google Scholar]
- Hongyo T., Buzard G. S., Calvert R. J., Weghorst C. M. 'Cold SSCP': a simple, rapid and non-radioactive method for optimized single-strand conformation polymorphism analyses. Nucleic Acids Res. 1993 Aug 11;21(16):3637–3642. doi: 10.1093/nar/21.16.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawabata H., Masuzawa T., Yanagihara Y. Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol Immunol. 1993;37(11):843–848. doi: 10.1111/j.1348-0421.1993.tb01714.x. [DOI] [PubMed] [Google Scholar]
- Keirans J. E., Hutcheson H. J., Durden L. A., Klompen J. S. Ixodes (Ixodes) scapularis (Acari:Ixodidae): redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. J Med Entomol. 1996 May;33(3):297–318. doi: 10.1093/jmedent/33.3.297. [DOI] [PubMed] [Google Scholar]
- Kuhner M. K., Yamato J., Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics. 1998 May;149(1):429–434. doi: 10.1093/genetics/149.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurtenbach K., Peacey M., Rijpkema S. G., Hoodless A. N., Nuttall P. A., Randolph S. E. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol. 1998 Apr;64(4):1169–1174. doi: 10.1128/aem.64.4.1169-1174.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Fleche A., Postic D., Girardet K., Peter O., Baranton G. Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol. 1997 Oct;47(4):921–925. doi: 10.1099/00207713-47-4-921. [DOI] [PubMed] [Google Scholar]
- Magoulas A., Tsimenides N., Zouros E. Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: the case of the European anchovy (Engraulis encrasicolus). Mol Biol Evol. 1996 Jan;13(1):178–190. doi: 10.1093/oxfordjournals.molbev.a025554. [DOI] [PubMed] [Google Scholar]
- Marti Ras N., Postic D., Foretz M., Baranton G. Borrelia burgdorferi sensu stricto, a bacterial species "made in the U.S.A."? Int J Syst Bacteriol. 1997 Oct;47(4):1112–1117. doi: 10.1099/00207713-47-4-1112. [DOI] [PubMed] [Google Scholar]
- Mathiesen D. A., Oliver J. H., Jr, Kolbert C. P., Tullson E. D., Johnson B. J., Campbell G. L., Mitchell P. D., Reed K. D., Telford S. R., 3rd, Anderson J. F. Genetic heterogeneity of Borrelia burgdorferi in the United States. J Infect Dis. 1997 Jan;175(1):98–107. doi: 10.1093/infdis/175.1.98. [DOI] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- Nadelman R. B., Wormser G. P. Lyme borreliosis. Lancet. 1998 Aug 15;352(9127):557–565. doi: 10.1016/S0140-6736(98)01146-5. [DOI] [PubMed] [Google Scholar]
- Neigel J. E., Avise J. C. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics. 1993 Dec;135(4):1209–1220. doi: 10.1093/genetics/135.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris D. E., Johnson B. J., Piesman J., Maupin G. O., Clark J. L., Black W. C., 4th Culturing selects for specific genotypes of Borrelia burgdorferi in an enzootic cycle in Colorado. J Clin Microbiol. 1997 Sep;35(9):2359–2364. doi: 10.1128/jcm.35.9.2359-2364.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris D. E., Klompen J. S., Keirans J. E., Black W. C., 4th Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. J Med Entomol. 1996 Jan;33(1):78–89. doi: 10.1093/jmedent/33.1.78. [DOI] [PubMed] [Google Scholar]
- Oliver J. H., Jr, Clark K. L., Chandler F. W., Jr, Tao L., James A. M., Banks C. W., Huey L. O., Banks A. R., Williams D. C., Durden L. A. Isolation, cultivation, and characterization of Borrelia burgdorferi from rodents and ticks in the Charleston area of South Carolina. J Clin Microbiol. 2000 Jan;38(1):120–124. doi: 10.1128/jcm.38.1.120-124.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver J. H., Jr Lyme borreliosis in the southern United States: a review. J Parasitol. 1996 Dec;82(6):926–935. [PubMed] [Google Scholar]
- Oliver J. H., Jr, Owsley M. R., Hutcheson H. J., James A. M., Chen C., Irby W. S., Dotson E. M., McLain D. K. Conspecificity of the ticks Ixodes scapularis and I. dammini (Acari: Ixodidae). J Med Entomol. 1993 Jan;30(1):54–63. doi: 10.1093/jmedent/30.1.54. [DOI] [PubMed] [Google Scholar]
- Orloski K. A., Hayes E. B., Campbell G. L., Dennis D. T. Surveillance for Lyme disease--United States, 1992-1998. MMWR CDC Surveill Summ. 2000 Apr 28;49(3):1–11. [PubMed] [Google Scholar]
- Piesman J., Clark K. L., Dolan M. C., Happ C. M., Burkot T. R. Geographic survey of vector ticks (Ixodes scapularis and Ixodes pacificus) for infection with the Lyme disease spirochete, Borrelia burgdorferi. J Vector Ecol. 1999 Jun;24(1):91–98. [PubMed] [Google Scholar]
- Piesman J., Sinsky R. J. Ability to Ixodes scapularis, Dermacentor variabilis, and Amblyomma americanum (Acari: Ixodidae) to acquire, maintain, and transmit Lyme disease spirochetes (Borrelia burgdorferi). J Med Entomol. 1988 Sep;25(5):336–339. doi: 10.1093/jmedent/25.5.336. [DOI] [PubMed] [Google Scholar]
- Postic D., Ras N. M., Lane R. S., Hendson M., Baranton G. Expanded diversity among Californian borrelia isolates and description of Borrelia bissettii sp. nov. (formerly Borrelia group DN127). J Clin Microbiol. 1998 Dec;36(12):3497–3504. doi: 10.1128/jcm.36.12.3497-3504.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiu W. G., Bosler E. M., Campbell J. R., Ugine G. D., Wang I. N., Luft B. J., Dykhuizen D. E. A population genetic study of Borrelia burgdorferi sensu stricto from eastern Long Island, New York, suggested frequency-dependent selection, gene flow and host adaptation. Hereditas. 1997;127(3):203–216. doi: 10.1111/j.1601-5223.1997.00203.x. [DOI] [PubMed] [Google Scholar]
- Rand D. M., Kann L. M. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996 Jul;13(6):735–748. doi: 10.1093/oxfordjournals.molbev.a025634. [DOI] [PubMed] [Google Scholar]
- Rannala B., Qiu W. G., Dykhuizen D. E. Methods for estimating gene frequencies and detecting selection in bacterial populations. Genetics. 2000 Jun;155(2):499–508. doi: 10.1093/genetics/155.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rich S. M., Caporale D. A., Telford S. R., 3rd, Kocher T. D., Hartl D. L., Spielman A. Distribution of the Ixodes ricinus-like ticks of eastern North America. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6284–6288. doi: 10.1073/pnas.92.14.6284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rijpkema S. G., Molkenboer M. J., Schouls L. M., Jongejan F., Schellekens J. F. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995 Dec;33(12):3091–3095. doi: 10.1128/jcm.33.12.3091-3095.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992 May;9(3):552–569. doi: 10.1093/oxfordjournals.molbev.a040727. [DOI] [PubMed] [Google Scholar]
- Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Walsh P. S., Levenson C. H., Erlich H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6230–6234. doi: 10.1073/pnas.86.16.6230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schauber E. M., Gertz S. J., Maple W. T., Ostfeld R. S. Coinfection of blacklegged ticks (Acari: Ixodidae) in Dutchess County, New York, with the agents of Lyme disease and human granulocytic ehrlichiosis. J Med Entomol. 1998 Sep;35(5):901–903. doi: 10.1093/jmedent/35.5.901. [DOI] [PubMed] [Google Scholar]
- Schwan T. G., Piesman J. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol. 2000 Jan;38(1):382–388. doi: 10.1128/jcm.38.1.382-388.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seinost G., Dykhuizen D. E., Dattwyler R. J., Golde W. T., Dunn J. J., Wang I. N., Wormser G. P., Schriefer M. E., Luft B. J. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun. 1999 Jul;67(7):3518–3524. doi: 10.1128/iai.67.7.3518-3524.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Socransky S. S., Smith C., Martin L., Paster B. J., Dewhirst F. E., Levin A. E. "Checkerboard" DNA-DNA hybridization. Biotechniques. 1994 Oct;17(4):788–792. [PubMed] [Google Scholar]
- Sonenshine D. E., Ratzlaff R. E., Troyer J., Demmerle S., Demmerle E. R., Austin W. E., Tan S., Annis B. A., Jenkins S. Borrelia burgdorferi in eastern Virginia: comparison between a coastal and inland locality. Am J Trop Med Hyg. 1995 Aug;53(2):123–133. doi: 10.4269/ajtmh.1995.53.123. [DOI] [PubMed] [Google Scholar]
- Spielman A., Wilson M. L., Levine J. F., Piesman J. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annu Rev Entomol. 1985;30:439–460. doi: 10.1146/annurev.en.30.010185.002255. [DOI] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telford S. R., 3rd, Armstrong P. M., Katavolos P., Foppa I., Garcia A. S., Wilson M. L., Spielman A. A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerg Infect Dis. 1997 Apr-Jun;3(2):165–170. doi: 10.3201/eid0302.970209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telford S. R., 3rd The name Ixodes dammini epidemiologically justified. Emerg Infect Dis. 1998 Jan-Mar;4(1):132–134. doi: 10.3201/eid0401.980126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R., Routman E., Phillips C. A. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics. 1995 Jun;140(2):767–782. doi: 10.1093/genetics/140.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang G., van Dam A. P., Le Fleche A., Postic D., Peter O., Baranton G., de Boer R., Spanjaard L., Dankert J. Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol. 1997 Oct;47(4):926–932. doi: 10.1099/00207713-47-4-926. [DOI] [PubMed] [Google Scholar]
- Wang I. N., Dykhuizen D. E., Qiu W., Dunn J. J., Bosler E. M., Luft B. J. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999 Jan;151(1):15–30. doi: 10.1093/genetics/151.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watterson G. A. The homozygosity test of neutrality. Genetics. 1978 Feb;88(2):405–417. doi: 10.1093/genetics/88.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wesson D. M., McLain D. K., Oliver J. H., Piesman J., Collins F. H. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10221–10225. doi: 10.1073/pnas.90.21.10221. [DOI] [PMC free article] [PubMed] [Google Scholar]