Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):941–950. doi: 10.1093/genetics/162.2.941

Molecular evidence on the origin and evolution of glutinous rice.

Kenneth M Olsen 1, Michael D Purugganan 1
PMCID: PMC1462305  PMID: 12399401

Abstract

Glutinous rice is a major type of cultivated rice with long-standing cultural importance in Asia. A mutation in an intron 1 splice donor site of the Waxy gene is responsible for the change in endosperm starch leading to the glutinous phenotype. Here we examine an allele genealogy of the Waxy locus to trace the evolutionary and geographical origins of this phenotype. On the basis of 105 glutinous and nonglutinous landraces from across Asia, we find evidence that the splice donor mutation has a single evolutionary origin and that it probably arose in Southeast Asia. Nucleotide diversity measures indicate that the origin of glutinous rice is associated with reduced genetic variation characteristic of selection at the Waxy locus; comparison with an unlinked locus, RGRC2, confirms that this pattern is specific to Waxy. In addition, we find that many nonglutinous varieties in Northeast Asia also carry the splice donor site mutation, suggesting that partial suppression of this mutation may have played an important role in the development of Northeast Asian nonglutinous rice. This study demonstrates the utility of phylogeographic approaches for understanding trait diversification in crops, and it contributes to growing evidence on the importance of modifier loci in the evolution of domestication traits.

Full Text

The Full Text of this article is available as a PDF (109.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cai X. L., Wang Z. Y., Xing Y. Y., Zhang J. L., Hong M. M. Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J. 1998 May;14(4):459–465. doi: 10.1046/j.1365-313x.1998.00126.x. [DOI] [PubMed] [Google Scholar]
  2. Doebley J., Stec A., Hubbard L. The evolution of apical dominance in maize. Nature. 1997 Apr 3;386(6624):485–488. doi: 10.1038/386485a0. [DOI] [PubMed] [Google Scholar]
  3. Doebley J., Stec A., Wendel J., Edwards M. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9888–9892. doi: 10.1073/pnas.87.24.9888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorweiler J., Stec A., Kermicle J., Doebley J. Teosinte glume architecture 1: A Genetic Locus Controlling a Key Step in Maize Evolution. Science. 1993 Oct 8;262(5131):233–235. doi: 10.1126/science.262.5131.233. [DOI] [PubMed] [Google Scholar]
  5. Eyre-Walker A., Gaut R. L., Hilton H., Feldman D. L., Gaut B. S. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441–4446. doi: 10.1073/pnas.95.8.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frances H., Bligh J., Larkin P. D., Roach P. S., Jones C. A., Fu H., Park W. D. Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol. 1998 Oct;38(3):407–415. doi: 10.1023/a:1006021807799. [DOI] [PubMed] [Google Scholar]
  7. Hanson M. A., Gaut B. S., Stec A. O., Fuerstenberg S. I., Goodman M. M., Coe E. H., Doebley J. F. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics. 1996 Jul;143(3):1395–1407. doi: 10.1093/genetics/143.3.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hilton H., Gaut B. S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics. 1998 Oct;150(2):863–872. doi: 10.1093/genetics/150.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirano H. Y., Eiguchi M., Sano Y. A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol. 1998 Aug;15(8):978–987. doi: 10.1093/oxfordjournals.molbev.a026013. [DOI] [PubMed] [Google Scholar]
  10. Holmes E. C., Worobey M., Rambaut A. Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol. 1999 Mar;16(3):405–409. doi: 10.1093/oxfordjournals.molbev.a026121. [DOI] [PubMed] [Google Scholar]
  11. Isshiki M., Morino K., Nakajima M., Okagaki R. J., Wessler S. R., Izawa T., Shimamoto K. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant J. 1998 Jul;15(1):133–138. doi: 10.1046/j.1365-313x.1998.00189.x. [DOI] [PubMed] [Google Scholar]
  12. Isshiki M., Nakajima M., Satoh H., Shimamoto K. dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J. 2000 Aug;23(4):451–460. doi: 10.1046/j.1365-313x.2000.00803.x. [DOI] [PubMed] [Google Scholar]
  13. Kaminaka H., Morita S., Nakajima M., Masumura T., Tanaka K. Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol. 1998 Dec;39(12):1269–1280. doi: 10.1093/oxfordjournals.pcp.a029330. [DOI] [PubMed] [Google Scholar]
  14. Khush G. S. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol. 1997 Sep;35(1-2):25–34. [PubMed] [Google Scholar]
  15. Olsen K. M., Schaal B. A. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5586–5591. doi: 10.1073/pnas.96.10.5586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  17. Purugganan M. D., Boyles A. L., Suddith J. I. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics. 2000 Jun;155(2):855–862. doi: 10.1093/genetics/155.2.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanjur Oris I., Piperno Dolores R., Andres Thomas C., Wessel-Beaver Linda. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):535–540. doi: 10.1073/pnas.012577299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang R. L., Stec A., Hey J., Lukens L., Doebley J. The limits of selection during maize domestication. Nature. 1999 Mar 18;398(6724):236–239. doi: 10.1038/18435. [DOI] [PubMed] [Google Scholar]
  22. Wang Z. Y., Zheng F. Q., Shen G. Z., Gao J. P., Snustad D. P., Li M. G., Zhang J. L., Hong M. M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995 Apr;7(4):613–622. doi: 10.1046/j.1365-313x.1995.7040613.x. [DOI] [PubMed] [Google Scholar]
  23. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES